Nonlocal Perimeter

  • José M. Mazón
  • Julio Daniel Rossi
  • J. Julián Toledo
Part of the Frontiers in Mathematics book series (FM)


The word perimeter comes from the Greek peri (around) and meter (measure). A perimeter is usually used with two senses: it is the boundary that surrounds an N-dimensional set, and it is the measure of such boundary. We will see in these two first sections that these two concepts must be well precise.


  1. 6.
    L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (Clarendon, Oxford, 2000)zbMATHGoogle Scholar
  2. 12.
    F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J. Toledo, Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, 2010)Google Scholar
  3. 17.
    J. Bourgain, H. Brezis, P. Mironescu, Another Look at Sobolev Spaces, ed. by J.L. Menaldi et al. Optimal Control and Partial Differential Equations. A volume in honour of A. Bensoussan’s 60th birthday (IOS Press, Amsterdam, 2001), pp. 439–455Google Scholar
  4. 20.
    H. Brezis, How to recognize constant functions. Usp. Mat. Nauk 57 (2002) (in Russian). English translation in Russian Math. Surveys 57, 693–708 (2002)Google Scholar
  5. 29.
    L. Caffarelli, J.M. Roquejoffre, O. Savin, Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)MathSciNetzbMATHGoogle Scholar
  6. 36.
    J. Dávila, On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15, 519–527 (2002)MathSciNetCrossRefGoogle Scholar
  7. 38.
    E. De Giorgi, Definizione ed espressione analitica del perimetro di un insieme. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 14, 390–393 (1953)MathSciNetzbMATHGoogle Scholar
  8. 39.
    E. De Giorgi, Su una teoria generale della misura (r − 1)-dimensionale in uno spazio ad r dimensioni. (Italian) Ann. Mat. Pura Appl. 36, 191–213 (1954)Google Scholar
  9. 42.
    H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York 1969)Google Scholar
  10. 43.
    H. Federer, W. Fleming, Normal and integral currents. Ann. Math. 72, 458–520 (1960)MathSciNetCrossRefGoogle Scholar
  11. 46.
    H.W. Fleming, R. Rishel, An integral formula for total gradient variation. Arch. Math. 11, 218–222 (1960)MathSciNetCrossRefGoogle Scholar
  12. 51.
    E. Giusti, Minimal Surface and Functions of Bounded Variation. Monographs in Mathematics, vol. 80 (Birkhäuser, Basel, 1984)Google Scholar
  13. 60.
    M. Miranda, Distribuzioni aventi derivate misure insiemi di perimetro localmente finito. Ann. Scuola Norm. Sup. Pisa 18, 27–56 (1964)MathSciNetzbMATHGoogle Scholar
  14. 62.
    A. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence. Calc. Var. Partial Differ. Equ. 19, 229–255 (2004)MathSciNetCrossRefGoogle Scholar
  15. 63.
    A. Ponce, An estimate in the spirit of Poincare’s inequality. J. Eur. Math. Soc. 6, 1–15 (2004)MathSciNetCrossRefGoogle Scholar
  16. 72.
    J. Van Schaftingen, M. Willem, Set Transformations, Symmetrizations and Isoperimetric Inequalities. (English summary) Nonlinear Analysis and Applications to Physical Sciences (Springer Italia, Milan, 2004), pp. 135–152Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José M. Mazón
    • 1
  • Julio Daniel Rossi
    • 2
  • J. Julián Toledo
    • 3
  1. 1.Departamento de Análisis MatemáticoUniversitat de ValènciaValenciaSpain
  2. 2.Departamento de MatemáticasUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Análisis MatemáticoUniversitat de ValènciaValènciaSpain

Personalised recommendations