Linguistic Structures in the Light of the Digital Transformation: Addressing the Conflict Between Reference and Change

  • Ulrich FrankEmail author


Information systems are at the core of the digital transformation. To cope with the dynamics of new, emerging markets and ever changing requirements, it is often argued that agile approaches to software development are mandatory. Some even demand to develop information systems without conceptual models, because they were likely to be outdated even before the software is implemented. While such a proposal is not acceptable for serious reasons, conceptual modelling is indeed facing a remarkable challenge in times of change. On the one hand, economics demand for reuse and interoperability, hence, for stable references. On the other hand, freezing structures is likely to compromise a software system’s adaptability. Based on an analysis of this conflict and further challenges, it will be shown how languages for conceptual modelling can be designed to support both, the need for reference and the demand for change.


Conceptual modelling Modelling languages Reuse Flexibility Abstraction Learning 


  1. Atkinson, C., & Kühne, T. (2001). The Essence of multilevel metamodeling. In «UML» 2001—the unified modeling language. Modeling languages, concepts, and tools (pp. 19–33). Berlin, London, New York: Springer.CrossRefGoogle Scholar
  2. Bateson, G. (1972). Steps to an ecology of mind. Chicago: University of Chicago Press.Google Scholar
  3. Beck, K. (2000). Extreme programming explained: Embrace change. Boston: Addison-Wesley.Google Scholar
  4. Becker, J., Algermissen, L., Niehaves, B., & Delfmann, P. (2005). Business process reference models for reorganizing public administrations-a case study. Schriftenreihe Informatik, Electronic Government, 134–142.Google Scholar
  5. Becker, J., Delfmann, P., & Knackstedt, R. (2007). Adaptive reference modeling: Integrating configurative and generic adaptation techniques for information models. In Reference modeling: Efficient information systems design through reuse of information models (pp. 27–58).Google Scholar
  6. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York, London: W.W. Norton & Company.Google Scholar
  7. Clark, T., Sammut, P., & Willans, J. (2008). Superlanguages: Developing languages and applications with XMF. London: Middlesex University London.Google Scholar
  8. Davidson, C., Goldberg, D., & Jones, Z. (2010). The future of thinking: Learning institutions in a digital age. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  9. Derrida, J. (1976). Of grammatology. Baltimore: Johns Hopkins University Press.Google Scholar
  10. Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM, 15(10), 859–866.CrossRefGoogle Scholar
  11. Domingos, P. (2017). The master algorithm: How the quest for the ultimate learning machine will remake our world. Penguin Books Ltd.Google Scholar
  12. Evans, J., & Rzhetsky, A. (2010). Machine science. Science, 329(5990), 399–400.CrossRefGoogle Scholar
  13. Fettke, P., & Loos, P. (2007). Reference modeling for business systems analysis. Hershey: Idea Group.CrossRefGoogle Scholar
  14. Fowler, M., & Beck, K. (2010). Refactoring: Improving the design of existing code. Boston: Addison-Wesley.Google Scholar
  15. Frank, U. (2014). Multilevel modeling: Toward a new paradigm of conceptual modeling and information systems design. Business & Information Systems Engineering, 6(6), 319–337.CrossRefGoogle Scholar
  16. Hellmann, S., Lehmann, J., & Auer, S. (2008). Learning of OWL class descriptions on very large knowledge bases. In Proceedings of the 2007 International Conference on Posters and Demonstrations (Vol. 401, pp. 102–103).Google Scholar
  17. Hoppenbrouwers, S. J. B. A. (2003). Freezing language: Conceptualisation processes across ICT-supported organisations.Google Scholar
  18. Kant, I. (1998). Critique of pure reason. In P. Guyer & A. Wood (Eds.), The Cambridge Edition of the Works of Immanuel Kant. Cambridge: Cambridge University Press.
  19. King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., et al. (2009). The automation of science. Science, 324(5923), 85–89.CrossRefGoogle Scholar
  20. Luhmann, N. (1967). Soziologische Aufklärung. Soziale Welt: Zeitschrift Für Sozialwissenschaftliche Forschung, 18(2/3), 97–123.Google Scholar
  21. Mahr, B. (2015). Modelle und ihre Befragbarkeit: Grundlagen einer allgemeinen Modelltheorie. Erwägen Wissen Ethik, 26(3), 329–342.Google Scholar
  22. Meyer, B. (2014). Agile!: The good, the hype and the ugly. Springer.Google Scholar
  23. Pentland, A. (2015). Social Physics - how social networks can make us smarter. Penguin LCC US.Google Scholar
  24. Rorty, R. (2000). Universality and truth. Rorty and his critics (pp. 1–30). Oxford: Blackwell.Google Scholar
  25. Völker, J., & Niepert, M. (2011). Statistical schema induction. In Proceedings of the 8th Extended Semantic Web Conference on the Semantic Web: Research and Applications-Volume Part I (pp. 124–138). Heidelberg: Springer Verlag.Google Scholar
  26. Wartofsky, M. (1979). Models: Representation and the scientific understanding (R. Cohen, Ed.). Sprinter Netherlands.Google Scholar
  27. Wittgenstein, L. (1973). Philosophical investigations. Wiley-Blackwell.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Duisburg-EssenEssenGermany

Personalised recommendations