Skip to main content

Numerical Simulation of Tungsten Melting Under Fusion Reactor-Relevant High-Power Pulsed Heating

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 133)

Abstract

Surface melting of tungsten under exposure to a pulsed electron beam was simulated numerically, the evaporation process taken into account. The calculation is based on the experimental time dependence of the total beam power. The model of the tungsten heating process is based on solving the two-phase Stefan problem. The position of the phase boundary depends on discontinuous nonlinear coefficients. The aim of the study is to provide a detailed resolution of the heat flow deep into the material with a fine spatial grid step. As compared with the size of the tungsten plate, the heating depth is very small. The problem statement under consideration is multiscale. Further expansion of the model involves gas dynamics equations to simulate the dynamics of the liquid and gaseous phases of the metal. Two approaches to solving the equation for temperature are considered: the implicit run method and the explicitly solvable Konovalov-Popov model. The results of calculations correlate with the experimental data obtained at the experimental stand Beam of Electrons for materials Test Applications (BETA) at Budker Institute of Nuclear Physics (BINP) of the SB RAS.

Keywords

  • Numerical simulation
  • Pulsed heating
  • Melting

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-06228-6_5
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-06228-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Vyacheslavov, L., Arakcheev, A., Burdakov, A., Kandaurov, I., Kasatov, A., Kurkuchekov, V., Mekler, K., Popov, V., Shoshin, A., Skovorodin, D., Trunev, Y., Vasilyev, A.: Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads. AIP Conf. Proc. 1771, 060004 (2016)

    CrossRef  Google Scholar 

  2. Konovalov, A.N., Popov, YuP: Explicitly solvable optimal discrete models with controlled disbalance of the total mechanical energy for dynamical problems of linear elasticity. Siberian Math. J. 56(5), 872–878 (2015)

    MathSciNet  CrossRef  Google Scholar 

  3. Apushkinskaya, D.: Free Boundary Problems: Regularity Properties Near the Fixed Boundary. LNM, vol. 2218. Springer (2018)

    Google Scholar 

  4. Caffarelli, L.A.: The smoothness of the free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)

    MathSciNet  CrossRef  Google Scholar 

  5. Meirmanov, A.M.: The Stefan Problem. Nauka, Novosibirsk (1986)

    Google Scholar 

  6. Vynnycky, M., Mitchell, S.L.: On the numerical solution of a Stefan problem with finite extinction time. J. Comput. Appl. Math. 276, 98–109 (2015)

    MathSciNet  CrossRef  Google Scholar 

  7. Mitchell, S.L., Vynnycky, M.: On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions. J. Comput. Appl. Math. 264, 49–64 (2014)

    MathSciNet  CrossRef  Google Scholar 

  8. Cialkowski, M.J., Grysa, K.: Trefftz method in solving the inverse problems. J. Inv. Ill-Posed Prob. 18, 595–616 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Lukyanenko, D.V., Shishlenin, M.A., Volkov, V.T.: Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data. Commun. Nonlinear Sci. Numer. Simul. 54, 1339–1351 (2018)

    MathSciNet  CrossRef  Google Scholar 

  10. Kabanikhin, S.I., Shishlenin, M.A.: Recovering a time-dependent diffusion coefficient from nonlocal data. Numer. Anal. Appl. 11(1,) 38–44 (2018)

    MathSciNet  CrossRef  Google Scholar 

  11. Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., Fortov, V.E.: Unusual plasticity and strength of metals at ultra-short load durations. Phys. Usp. 60, 490–508 (2017)

    CrossRef  Google Scholar 

  12. Pikuz, S.A. (Jr.), Faenov, A.Y., Skobelev, I.Y., Fortov, V.E.: Production of exotic states of matter with the use of X-rays generated by focusing a petawatt laser pulse onto a solid target. Phys. Usp. 57, 702–707 (2014)

    Google Scholar 

  13. Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. Usp. 27, 181–205 (1984)

    CrossRef  Google Scholar 

  14. Trunev, YuA, Arakcheev, A.S., Burdakov, A.V., Kandaurov, I.V., Kasatov, A.A., Kurkuchekov, V.V., Mekler, K.I., Popov, V.A., Shoshin, A.A., Skovorodin, D.I., Vasilyev, A.A., Vyacheslavov, L.N.: Heating of tungsten target by intense pulse electron beam. AIP Conf. Proc. 1771, 060016 (2016)

    CrossRef  Google Scholar 

  15. Taluts, S.G.: Experimental study of the thermophysical properties of transition metals and alloys based on iron at high temperatures: abstract. dis. d-RA Fiz.-Mat. Sciences: 01.04.14. Publ. house UGGA, Yekaterinburg (2001). (in Russian)

    Google Scholar 

  16. Davis, J.W., Smith, P.D.: ITER material properties handbook. J. Nucl. Mater. 233, 1593–1596 (1996)

    CrossRef  Google Scholar 

  17. Ho, C.Y., Powell, R.W., Liley, P.E.: Thermal conductivity of elements. J. Phys. Chem. Ref. Data 1, 279 (1972)

    CrossRef  Google Scholar 

  18. Pottlacher, G.: Thermal conductivity of pulse-heated liquid metals at melting and in the liquid phase. J. Non-Cryst. Solids 250, 177–181 (1999)

    CrossRef  Google Scholar 

  19. Popov, V.A., Arakcheev, A.S., Burdakov, A.V., Kasatov, A.A., Vasilyev, A.A., Vyacheslavov, L.N.: Theoretical modeling of shielding for plasma flow and electron beam heating. AIP Conf. Proc. 1771, 060009 (2016)

    CrossRef  Google Scholar 

  20. Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer, p. 784. Editorial URSS, Moscow (2003). (in Russian)

    Google Scholar 

  21. Yanenko, N.N.: Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics, p. 196. Science. Sib. Deposition, Novosibirsk (1967) (in Russian)

    Google Scholar 

  22. Maksimova, A.G., Lazareva, G.G., Arakcheev, A.S.: Computer Calculation of Heating of Various Geometry of Cracks Formed under Pulsed Heat Load. Bulletin of CC: Computer Science, vol. 41. NCC Publisher, Novosibirsk (2018)

    Google Scholar 

  23. Muratov, M.V., Petrov, I.B., Levant, V.B.: Development of mathematical models of cracks for numerical solution of seismic problems with the use of grid-characteristic method. Comput. Res. Model. 8(6), 911–925 (2016). (in Russian)

    Google Scholar 

  24. Galanin, M.P., Proshunin, N.N., Rodin, A.S., Sorokin, D.L.: The Solution of three-dimensional unsteady heat conduction equation by finite element method taking into account phase transitions, No. 66, p. 27 . Preprint IPM im. M. V. Keldysh, (2016). (in Russian)

    Google Scholar 

  25. Konovalov, A.N.: Numerical methods for the dynamical problems of elasticity. Siberian Math. J. 38(3), 471–487 (1997)

    MathSciNet  CrossRef  Google Scholar 

  26. Soldatkina, E.I., Arakcheev, A.S., Bagryansky, P.A.: Experiments in support of the gas dynamic trap based facility for plasma–material interaction testing. Fusion Eng. Des. 88(11), 3084–3090 (2013)

    CrossRef  Google Scholar 

  27. Arakcheev, A.S., Apushkinskaya, D.E., Kandaurov, I.V., Kasatov, A.A., Kurkuchekov, V.V., Lazareva, G.G., Maksimova, A.G., Popov, V.A., Snytnikov, A.V., Trunev, YuA, Vasilyev, A.A., Vyacheslavov, L.N.: Two-dimensional numerical simulation of tungsten melting under pulsed electron beam. Fusion Eng. Des. 132, 13–17 (2018)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The problem statement the experimental data were supported by the Russian Science Foundation (project № 17-79-20203). Discrete models and computational algorithms were conducted within the framework of the budget project 0315-2016-0009 for ICMMG of the SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina G. Lazareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Lazareva, G.G., Arakcheev, A.S., Vasilyev, A.A., Maksimova, A.G. (2019). Numerical Simulation of Tungsten Melting Under Fusion Reactor-Relevant High-Power Pulsed Heating. In: Petrov, I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L. (eds) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-030-06228-6_5

Download citation