Skip to main content

Business Network Analytics: From Graphs to Supernetworks

  • Chapter
  • First Online:
Book cover Business and Consumer Analytics: New Ideas

Abstract

A large number of problems in business and consumer analytics have input graphs or networks. These mathematical entities have a long standing tradition in discrete applied mathematics and computer science. In many cases, they are the most natural means to represent some type of relationships in data. Consequently, a large number of solution methods based on heuristics and exact algorithms exist for problems that have graphs and/or networks as part of their input. While the number of possible applications of these techniques is not limited to problems in business and customer analytics, we have chosen to present some of them in a survey that would allow newcomers to the field of data science to create some familiarity with the key questions that motivate the area. We have also provided a survey on recent applications and new algorithmic approaches for data analytics. In addition we discuss issues related to the computational complexity of some problems associated with them. Other chapters of this section complement the discussion in this chapter with specific examples of interest or that could motivate new novel research direction and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://puzzlemuseum.com/month/picm02/200207icosian.htm.

  2. 2.

    http://www.daviddarling.info/encyclopedia/I/Icosian_Game.html.

  3. 3.

    https://archive.org/details/whoshallsurviven00jlmo.

  4. 4.

    https://www.yworks.com/products/yed.

  5. 5.

    www.graphviz.org.

  6. 6.

    https://www.rome2rio.com/.

  7. 7.

    https://www.nada.kth.se/~viggo/problemlist/compendium.html.

  8. 8.

    Klaus von Lampe, Definitions of Organized Crime, Sep. 7, 2017, Available from www.organized-crime.de/organizedcrimedefinitions.htm.

  9. 9.

    https://www.yworks.com/yed.

  10. 10.

    http://stability.matticklab.com.

  11. 11.

    https://www.sciencenews.org/article/eulers-bridges.

  12. 12.

    https://en.wikipedia.org/wiki/Klein_bottle.

  13. 13.

    Commetrix:http://www.commetrix.de.

  14. 14.

    Cuttlefish:http://cuttlefish.sourceforge.net.

  15. 15.

    Cytoscape:http://www.cytoscape.org.

  16. 16.

    EgoNet:https://sourceforge.net/projects/egonet/.

  17. 17.

    Gephi:https://gephi.org.

  18. 18.

    GraphChi:https://github.com/GraphChi/graphchi-cpp.

  19. 19.

    GraphStream:http://graphstream-project.org.

  20. 20.

    Graphviz:https://www.graphviz.org.

  21. 21.

    graph-tool:https://graph-tool.skewed.de.

  22. 22.

    GUESS:http://graphexploration.cond.org.

  23. 23.

    igraph:http://igraph.org.

  24. 24.

    JUNG:https://github.com/jrtom/jung.

  25. 25.

    MapEquation:http://www.mapequation.org.

  26. 26.

    MeerKat:https://www.amii.ca/meerkat/.

  27. 27.

    MuxViz:http://muxviz.net.

  28. 28.

    NetMiner:http://www.netminer.com.

  29. 29.

    NetworKit:https://networkit.iti.kit.edu.

  30. 30.

    NetworkX:http://networkx.github.io.

  31. 31.

    Network Workbench: http://nwb.cns.iu.edu.

  32. 32.

    NodeXL:https://nodexl.codeplex.com/.

  33. 33.

    Pajek:http://mrvar.fdv.uni-lj.si/pajek.

  34. 34.

    Radatools:http://deim.urv.cat/~sergio.gomez/radatools.php.

  35. 35.

    Radalib: http://deim.urv.cat/~sergio.gomez/radalib.php.

  36. 36.

    SNAP:http://snap.stanford.edu/snap.

  37. 37.

    SocNetV:http://socnetv.org.

  38. 38.

    Visone:https://www.visone.info.

References

  1. Dolphins network dataset – KONECT (2016). http://konect.uni-koblenz.de/networks/dolphins

  2. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: LATIN, Lecture Notes in Computer Science, vol. 2286, pp. 598–612. Springer (2002)

    Google Scholar 

  3. Adar, E., Kim, M.: Softguess: Visualization and exploration of code clones in context. In: Software Engineering, 2007. ICSE 2007. 29th International Conference on, pp. 762–766. IEEE (2007)

    Google Scholar 

  4. Akram, M., Dudek, W.A.: Intuitionistic fuzzy hypergraphs with applications. Information Sciences 218, 182–193 (2013). https://doi.org/10.1016/j.ins.2012.06.024

    Article  MathSciNet  MATH  Google Scholar 

  5. Akram, M., Sarwar, M.: Transversals of m-polar fuzzy hypergraphs with applications. Journal of Intelligent and Fuzzy Systems 33(1), 351–364 (2017)

    Article  MATH  Google Scholar 

  6. Aloise, D., Caporossi, G., Hansen, P., Liberti, L., Perron, S., Ruiz, M.: Modularity maximization in networks by variable neighborhood search. In: D.A. Bader, H. Meyerhenke, P. Sanders, D. Wagner (eds.) Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop, Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings, Contemporary Mathematics, vol. 588, pp. 113–128. American Mathematical Society (2012). https://doi.org/10.1090/conm/588

    Google Scholar 

  7. Alonge, G., Ciancamerla, E., Mastrilli, A., Minichino, M., Nicotra, A., Ranno, M., Reali, M., Regina, P.: Towards energy efficiency of interdependent urban networks. IJSPM 11(6), 529–546 (2016). https://doi.org/10.1504/IJSPM.2016.10001563

    Article  Google Scholar 

  8. Amato, F., Moscato, V., Picariello, A., Sperlí, G.: Modelling multimedia social network for topic ranking. In: 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 81–86 (2016). https://doi.org/10.1109/WAINA.2016.168

  9. Amato, F., Moscato, V., Picariello, A., Sperlì, G.: Multimedia social network modeling: A proposal. In: Tenth IEEE International Conference on Semantic Computing, ICSC 2016, Laguna Hills, CA, USA, February 4-6, 2016, pp. 448–453. IEEE Computer Society (2016). https://doi.org/10.1109/ICSC.2016.20

  10. Andre, R., Schlag, S., Schulz, C.: Memetic Multilevel Hypergraph Partitioning. ArXiv e-prints (2017)

    Google Scholar 

  11. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods 8(2), 277–284 (1987). https://doi.org/10.1137/0608024

    Article  MathSciNet  MATH  Google Scholar 

  12. Arthur, D., Motwani, R., Sharma, A., Xu, Y.: Pricing strategies for viral marketing on social networks. In: S. Leonardi (ed.) Internet and Network Economics: 5th International Workshop, WINE 2009, Rome, Italy, December 14-18, 2009. Proceedings, pp. 101–112. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10841-9_11

    Chapter  Google Scholar 

  13. Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex optimization problems. Journal of Computer and System Sciences 21(1), 136–153 (1980). https://doi.org/10.1016/0022-0000(80)90046-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Ausiello, G., Laura, L.: Directed hypergraphs: Introduction and fundamental algorithms - A survey. Theor. Comput. Sci. 658, 293–306 (2017). https://doi.org/10.1016/j.tcs.2016.03.016

    Article  MathSciNet  MATH  Google Scholar 

  15. Balasubramanian, R., Fellows, M., Raman, V.: An improved fixed-parameter algorithm for vertex cover. Information Processing Letters 65(3), 163–168 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bampo, M., Ewing, M.T., Mather, D.R., Stewart, D., Wallace, M.: The effects of the social structure of digital networks on viral marketing performance. Information Systems Research 19(3), 273–290 (2008). https://doi.org/10.1287/isre.1070.0152

    Article  Google Scholar 

  17. Bao, P., Shen, H.W., Chen, W., Cheng, X.Q.: Cumulative effect in information diffusion: Empirical study on a microblogging network. PLOS ONE 8(10), 1–7 (2013). https://doi.org/10.1371/journal.pone.0076027

    Article  Google Scholar 

  18. Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009)

    Google Scholar 

  19. Batagelj, V., Mrvar, A.: Pajek – program for large network analysis. Connections 21(2), 47–57 (1998)

    MATH  Google Scholar 

  20. Benjamin, A., Chartrand, G., Zhang, P.: The Fascinating World of Graph Theory. Princeton University Press, Princeton, NJ, USA (2015)

    Book  MATH  Google Scholar 

  21. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016). https://doi.org/10.1126/science.aad9029

    Article  Google Scholar 

  22. Berretta, R., Costa, W., Moscato, P.: Combinatorial optimization models for finding genetic signatures from gene expression datasets. In: J.M. Keith (ed.) Bioinformatics: Structure, Function and Applications, pp. 363–377. Humana Press, Totowa, NJ (2008). https://doi.org/10.1007/978-1-60327-429-6_19

    Chapter  Google Scholar 

  23. Berretta, R., Mendes, A., Moscato, P.: Integer programming models and algorithms for molecular classification of cancer from microarray data. In: Estivill-Castro [85], pp. 361–370. http://crpit.com/confpapers/CRPITV38Berretta.pdf

  24. Berretta, R., Mendes, A., Moscato, P.: Selection of discriminative genes in microarray experiments using mathematical programming. Journal of Research and Practice in Information Technology 39(4), 287–299 (2007). http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT39/JRPIT39.4.287.pdf

    Google Scholar 

  25. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, Inc., Orlando, FL, USA (1972)

    MATH  Google Scholar 

  26. Betzler, N., van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biology Bioinform. 8(5), 1296–1308 (2011). https://doi.org/10.1109/TCBB.2011.19

    Article  Google Scholar 

  27. Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness results for some graph motif problems. In: P. Ferragina, G.M. Landau (eds.) Combinatorial Pattern Matching, 19th Annual Symposium, CPM 2008, Pisa, Italy, June 18-20, 2008, Proceedings, Lecture Notes in Computer Science, vol. 5029, pp. 31–43. Springer (2008). https://doi.org/10.1007/978-3-540-69068-9_6

  28. Björklund, A., Kaski, P., Kowalik, L.: Constrained multilinear detection and generalized graph motifs. Algorithmica 74(2), 947–967 (2016). https://doi.org/10.1007/s00453-015-9981-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Physics Reports 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  30. Bodlaender, H.L., Lokshtanov, D., Penninkx, E.: Planar capacitated dominating set is w[1]-hard. In: J. Chen, F.V. Fomin (eds.) Parameterized and Exact Computation: 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, pp. 50–60. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_4

    Chapter  Google Scholar 

  31. Bonchi, F., Castillo, C., Gionis, A., Jaimes, A.: Social network analysis and mining for business applications. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 22 (2011)

    Article  Google Scholar 

  32. Bonet, M., Steel, M., Warnow, T., Yooseph, S.: Better methods for solving parsimony and compatibility. In: S. Istrail, P. Pevzner, M. Waterman (eds.) Proceedings of the 2nd Annual International Conference on Computational Molecular Biology (RECOMB-98), pp. 40–49. ACM Press, New York (1998)

    Google Scholar 

  33. Borradaile, G.: Planarity testing. In: Encyclopedia of Algorithms, pp. 1584–1585. Springer New York (2016)

    Chapter  Google Scholar 

  34. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008). https://doi.org/10.1109/TKDE.2007.190689

    Article  MATH  Google Scholar 

  35. Brandes, U., Wagner, D.: Analysis and visualization of social networks. Graph drawing software pp. 321–340 (2004)

    Google Scholar 

  36. Bretto, A.: Applications of Hypergraph Theory: A Brief Overview, pp. 111–116. Springer International Publishing, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00080-0_7

    Chapter  MATH  Google Scholar 

  37. Brunato, M., Hoos, H.H., Battiti, R.: On effectively finding maximal quasi-cliques in graphs. In: LION, Lecture Notes in Computer Science, vol. 5313, pp. 41–55. Springer (2007)

    Google Scholar 

  38. Bruno, F., Palopoli, L., Rombo, S.E.: New trends in graph mining: Structural and node-colored network motifs. IJKDB 1(1), 81–99 (2010). https://doi.org/10.4018/jkdb.2010100206

    Google Scholar 

  39. Bunke, H., Dickinson, P., Kraetzl, M., Neuhaus, M., Stettler, M.: Matching of hypergraphs — algorithms, applications, and experiments. In: H. Bunke, A. Kandel, M. Last (eds.) Applied Pattern Recognition, pp. 131–154. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76831-9_6

    Chapter  Google Scholar 

  40. Buss, J., Goldsmith, J.: Nondeterminism within P. SIAM Journal on Computing 22, 560–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cafieri, S., Hansen, P., Liberti, L.: Improving heuristics for network modularity maximization using an exact algorithm. Discrete Applied Mathematics 163, 65–72 (2014). https://doi.org/10.1016/j.dam.2012.03.030

    Article  MathSciNet  MATH  Google Scholar 

  42. Cai, L., Chen, J., Downey, R., Fellows, M.: On the parameterized complexity of short computation and factorization. Archives for Math. Logic 36, 321–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cao, S., Dehmer, M., Kang, Z.: Network entropies based on independent sets and matchings. Applied Mathematics and Computation 307(Supplement C), 265 – 270 (2017). https://doi.org/10.1016/j.amc.2017.02.021

    Article  MathSciNet  MATH  Google Scholar 

  44. Carrabs, F., Cerrone, C., Cerulli, R.: A memetic algorithm for the weighted feedback vertex set problem. Networks 64(4), 339–356 (2014). https://doi.org/10.1002/net.21577

    Article  MathSciNet  Google Scholar 

  45. Chalupa, D.: Construction of near-optimal vertex clique covering for real-world networks. Computing and Informatics 34(6), 1397–1417 (2015). http://www.cai.sk/ojs/index.php/cai/article/view/1276

    MathSciNet  MATH  Google Scholar 

  46. Chawla, S., Davis, J.G., Pandey, G.: On local pruning of association rules using directed hypergraphs. In: ICDE, p. 832. IEEE Computer Society (2004)

    Google Scholar 

  47. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improvements. In: Proc. 25th Int. Worksh. Graph-Theoretic Concepts in Computer Science, no. 1665 in Lecture Notes in Computer Science, pp. 313–324. Springer-Verlag (1999). http://www.cs.tamu.edu/faculty/chen/wg.ps

  48. Chen, P., Chou, C., Chen, M.: Distributed algorithms for k-truss decomposition. In: J.J. Lin, J. Pei, X. Hu, W. Chang, R. Nambiar, C.C. Aggarwal, N. Cercone, V. Honavar, J. Huan, B. Mobasher, S. Pyne (eds.) 2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, October 27-30, 2014, pp. 471–480. IEEE (2014). https://doi.org/10.1109/BigData.2014.7004264

  49. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD, pp. 1029–1038. ACM (2010)

    Google Scholar 

  50. Chou, Y.H., Wang, E.T., Chen, A.L.P.: Finding maximal quasi-cliques containing a target vertex in a graph. In: DATA, pp. 5–15. SciTePress (2015)

    Google Scholar 

  51. Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over 32 years. New England Journal of Medicine 357(4), 370–379 (2007). https://doi.org/10.1056/NEJMsa066082. PMID: 17652652

    Article  Google Scholar 

  52. Clark, M.B., Johnston, R.L., Inostroza-Ponta, M., Fox, A.H., Fortini, E., Moscato, P., Dinger, M.E., , Mattick, J.S.: Genome-wide analysis of long noncoding rna stability. Genome Research 22, 885–898 (2012)

    Article  Google Scholar 

  53. Conte, A., Firmani, D., Mordente, C., Patrignani, M., Torlone, R.: Fast enumeration of large k-plexes. In: KDD, pp. 115–124. ACM (2017)

    Google Scholar 

  54. Conway, D.: Modeling network evolution using graph motifs. CoRR abs/1105.0902 (2011). http://arxiv.org/abs/1105.0902

  55. Cotta, C., Moscato, P.: The k-feature set problem is W[2]-complete. J. Comput. Syst. Sci. 67(4), 686–690 (2003). https://doi.org/10.1016/S0022-0000(03)00081-3

    Article  MathSciNet  MATH  Google Scholar 

  56. Cotta, C., Sloper, C., Moscato, P.: Evolutionary search of thresholds for robust feature set selection: Application to the analysis of microarray data. In: G.R. Raidl, S. Cagnoni, J. Branke, D. Corne, R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G.D. Smith, G. Squillero (eds.) Applications of Evolutionary Computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, Coimbra, Portugal, April 5-7, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3005, pp. 21–30. Springer (2004). https://doi.org/10.1007/978-3-540-24653-4_3

    Google Scholar 

  57. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems 1695(5), 1–9 (2006)

    Google Scholar 

  58. Danziger, M.M., Bashan, A., Berezin, Y., Shekhtman, L.M., Havlin, S.: An Introduction to Interdependent Networks, pp. 189–202. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-08672-9_24

    Chapter  Google Scholar 

  59. Davies, S., Russe, S.: Np-completeness of searches for smallest possible feature sets. In: AAAI Symposium on Intelligent Relevance, pp. 37–39. AAAI Press (1994)

    Google Scholar 

  60. Davies, T., Marchione, E.: Event networks and the identification of crime pattern motifs. PLOS ONE 10(11), 1–19 (2015). https://doi.org/10.1371/journal.pone.0143638

    Article  Google Scholar 

  61. De Domenico, M., Porter, M.A., Arenas, A.: Muxviz: a tool for multilayer analysis and visualization of networks. Journal of Complex Networks 3(2), 159 (2015). https://doi.org/10.1093/comnet/cnu038

    Article  Google Scholar 

  62. De Masi, G., Iori, G., Caldarelli, G.: Fitness model for the italian interbank money market. Phys. Rev. E 74, 066,112 (2006). https://doi.org/10.1103/PhysRevE.74.066112

    Article  Google Scholar 

  63. Dehmer, M., Emmert-Streib, F., Mehler, A. (eds.): Towards an Information Theory of Complex Networks - Statistical Methods and Applications. Birkhäuser (2011). https://doi.org/10.1007/978-0-8176-4904-3

    MATH  Google Scholar 

  64. Desmier, E.: Co-evolution pattern mining in dynamic attributed graphs. (fouille de motifs de co-evolution dans des graphes dynamiques attribués). Ph.D. thesis, INSA de Lyon, Lyon - Villeurbanne, France (2014). https://tel.archives-ouvertes.fr/tel-01127630

  65. Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002). https://doi.org/10.1145/568522.568523

    Article  Google Scholar 

  66. Didimo, W., Liotta, G., Montecchiani, F.: Network visualization for financial crime detection. J. Vis. Lang. Comput. 25(4), 433–451 (2014). https://doi.org/10.1016/j.jvlc.2014.01.002

    Article  Google Scholar 

  67. Do, L., Lauw, H.W., Wang, K.: Mining revenue-maximizing bundling configuration. PVLDB 8(5), 593–604 (2015)

    Google Scholar 

  68. Dondi, R., Fertin, G., Vialette, S.: Finding approximate and constrained motifs in graphs. In: R. Giancarlo, G. Manzini (eds.) Combinatorial Pattern Matching - 22nd Annual Symposium, CPM 2011, Palermo, Italy, June 27-29, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6661, pp. 388–401. Springer (2011). https://doi.org/10.1007/978-3-642-21458-5_33

    Chapter  MATH  Google Scholar 

  69. Doshi, V., Shah, D., Médard, M., Effros, M.: Functional compression through graph coloring. IEEE Trans. Information Theory 56(8), 3901–3917 (2010). https://doi.org/10.1109/TIT.2010.2050835

    Article  MathSciNet  MATH  Google Scholar 

  70. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness I: Basic results. SIAM Journal on Computing 24(4), 873–921 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  71. Downey, R., Fellows, M.: Parameterized computational feasibility. In: P. Clote, J. Remmel (eds.): Feasible Mathematics II, pp. 219–244. Boston: Birkhäuser (1995)

    Chapter  Google Scholar 

  72. Downey, R., Fellows, M., Stege, U.: Computational Tractability: The View From Mars. Bulletin of the European Association for Theoretical Computer Science 69, 73–97 (1999). http://www.neci.nj.nec.com/homepages/fortnow/beatcs/column69.ps

    MathSciNet  MATH  Google Scholar 

  73. Downey, R., Fellows, M., Stege, U.: Parameterized Complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: Form DIMACS to DIMATIA to the future, AMS-DIMACS Proceedings Series, pp. 49–99. AMS (1999)

    Google Scholar 

  74. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  75. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  76. Downey, R.G., Fellows, M.R., Stege, U.: Computational tractability: The view from mars. Bulletin of the EATCS 69, 73–97 (1999)

    MathSciNet  MATH  Google Scholar 

  77. Du, Y., Wang, J., Li, Q.: An android malware detection approach using community structures of weighted function call graphs. IEEE Access 5, 17,478–17,486 (2017). https://doi.org/10.1109/ACCESS.2017.2720160

    Google Scholar 

  78. Ducournau, A., Bretto, A.: Random walks in directed hypergraphs and application to semi-supervised image segmentation. Computer Vision and Image Understanding 120, 91–102 (2014)

    Article  Google Scholar 

  79. Edler, D., Rosvall, M.: The mapequation software package (2013)

    Google Scholar 

  80. Eguchi, K., Murata, T.: Constrained community detection in multiplex networks. In: G.L. Ciampaglia, A.J. Mashhadi, T. Yasseri (eds.) Social Informatics - 9th International Conference, SocInfo 2017, Oxford, UK, September 13-15, 2017, Proceedings, Part I, Lecture Notes in Computer Science, vol. 10539, pp. 75–87. Springer (2017). https://doi.org/10.1007/978-3-319-67217-5_6

    Google Scholar 

  81. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica 47(2), 139–158 (2007). https://doi.org/10.1007/s00453-006-1226-x

    Article  MathSciNet  MATH  Google Scholar 

  82. English, A.: The early beginnings of social network analysis and the potential use for homeland security. https://goo.gl/1NtfpP (2016). (Accessed on 14/12/2017)

  83. Ensor, A., Lillo, F.: Colored-edge graph approach for the modeling of multimodal transportation systems. APJOR 33(1) (2016). https://doi.org/10.1142/S0217595916500056

    Article  MathSciNet  MATH  Google Scholar 

  84. Esper, A., Badr, Y., Biennier, F.: Hypergraph of services for business interconnectivity and collaboration. In: B. Vallespir, T. Alix (eds.) Advances in Production Management Systems. New Challenges, New Approaches - IFIP WG 5.7 International Conference, APMS 2009, Bordeaux, France, September 21-23, 2009, Revised Selected Papers, IFIP Advances in Information and Communication Technology, vol. 338, pp. 571–578. Springer (2009). https://doi.org/10.1007/978-3-642-16358-6_71

    Google Scholar 

  85. Estivill-Castro, V. (ed.): Computer Science 2005, Twenty-Eighth Australasian Computer Science Conference (ACSC2005), Newcastle, NSW, Australia, January/February 2005, CRPIT, vol. 38. Australian Computer Society (2005)

    Google Scholar 

  86. Fellows, M.: On the complexity of vertex set problems. Tech. rep., University of New Mexico (1988)

    Google Scholar 

  87. Fellows, M., Langston, M.: Nonconstructive advances in polynomial-time complexity. Information Processing Letters 28, 157–162 (1987/88)

    Article  MathSciNet  MATH  Google Scholar 

  88. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011). https://doi.org/10.1016/j.jcss.2010.07.003

    Article  MathSciNet  MATH  Google Scholar 

  89. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is np-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009). https://doi.org/10.1137/070687256

    Article  MathSciNet  MATH  Google Scholar 

  90. Fomin, F.V., Thilikos, D.M.: Branchwidth of graphs. In: M.Y. Kao (ed.) Encyclopedia of Algorithms, pp. 232–237. Springer (2016). https://doi.org/10.1007/978-1-4939-2864-4_55

    Chapter  Google Scholar 

  91. Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  92. Fortunato, S., Hric, D.: Community detection in networks: A user guide. Physics Reports 659(Supplement C), 1–44 (2016). https://doi.org/10.1016/j.physrep.2016.09.002. Community detection in networks: A user guide

    Article  MathSciNet  Google Scholar 

  93. Freeman, L.C.: The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press, Vancouver, BC, Canada (2004)

    Google Scholar 

  94. Friggeri, A., Chelius, G., Fleury, E.: Triangles to capture social cohesion. In: PASSAT/SocialCom 2011, Privacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third International Conference on and 2011 IEEE Third International Conference on Social Computing (SocialCom), Boston, MA, USA, 9-11 Oct., 2011, pp. 258–265. IEEE (2011). https://doi.org/10.1109/PASSAT/SocialCom.2011.169

  95. Friggeri, A., Fleury, E.: Maximizing the cohesion is np-hard. CoRR abs/1109.1994 (2011). http://arxiv.org/abs/1109.1994

  96. Friggeri, A., Fleury, E.: Finding cohesive communities with C3. Research Report RR-7947, INRIA (2012). https://hal.inria.fr/hal-00692548

  97. Fuentes, J., Sáez, P., Gutierrez, G., Scherson, I.D.: A method to find functional dependencies through refutations and duality of hypergraphs. Comput. J. 58(5), 1186–1198 (2015)

    Article  Google Scholar 

  98. Gabardo, A.C., Berretta, R., de Vries, N.J., Moscato, P.: Where does my brand end? an overlapping community approach. In: G. Leu, H.K. Singh, S. Elsayed (eds.) Intelligent and Evolutionary Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings, pp. 133–148. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-49049-6_10

    Chapter  Google Scholar 

  99. Gabardo, A.C., Lopes, H.S.: Using social network analysis to unveil cartels in public bids. In: Network Intelligence Conference (ENIC), 2014 European, pp. 17–21. IEEE Computer Society (2014). https://doi.org/10.1109/ENIC.2014.11

  100. Galeana-Sánchez, H., Manrique, M.: Directed hypergraphs: A tool for researching digraphs and hypergraphs. Discussiones Mathematicae Graph Theory 29(2), 313–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  101. Garnovetter, M.S.: The strength of weak ties. American Journal of Sociology 78, 1360–1380 (1973)

    Article  Google Scholar 

  102. Gebremedhin, A.H.: The enabling power of graph coloring algorithms in automatic differentiation and parallel processing. In: U. Naumann, O. Schenk, H.D. Simon, S. Toledo (eds.) Combinatorial Scientific Computing, 01.02. - 06.02.2009, Dagstuhl Seminar Proceedings, vol. 09061. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009). http://drops.dagstuhl.de/opus/volltexte/2009/2093/

    Google Scholar 

  103. Ghamry, W.K., Shukry, S.: On the interplay of network structure and routing strategies on network design methods for mitigation of intentional attacks in scale-free networks. J. Network Syst. Manage. 25(3), 508–535 (2017). https://doi.org/10.1007/s10922-016-9400-1

    Article  Google Scholar 

  104. Gibson, H., Faith, J., Vickers, P.: A survey of two-dimensional graph layout techniques for information visualisation. Information Visualization 12(3-4), 324–357 (2013). https://doi.org/10.1177/1473871612455749

    Article  Google Scholar 

  105. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  106. Goldbeck, N., Angeloudis, P., Ochieng, W.Y.: A dynamic network flow model for interdependent infrastructure and supply chain networks with uncertain asset operability. In: T. Bektas, S. Coniglio, A. Martinez-Sykora, S. Voß (eds.) Computational Logistics - 8th International Conference, ICCL 2017, Southampton, UK, October 18-20, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10572, pp. 513–528. Springer (2017). https://doi.org/10.1007/978-3-319-68496-3_34

    Google Scholar 

  107. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of coloring graphs with forbidden subgraphs. Journal of Graph Theory 84(4), 331–363 (2017). https://doi.org/10.1002/jgt.22028

    Article  MathSciNet  MATH  Google Scholar 

  108. Gómez, S., Fernández, A.: Radatools software, communities detection in complex networks and other tools (2011)

    Google Scholar 

  109. Gonçalves, J.N.C., Rodrigues, H.S., Monteiro, M.T.T.: A contribution of dynamical systems theory and epidemiological modeling to a viral marketing campaign. In: A.M. Madureira, A. Abraham, D. Gamboa, P. Novais (eds.) Intelligent Systems Design and Applications: 16th International Conference on Intelligent Systems Design and Applications (ISDA 2016) held in Porto, Portugal, December 16-18, 2016, pp. 974–983. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_96

    Google Scholar 

  110. Gong, M., Cai, Q., Ma, L., Wang, S., Lei, Y.: Computational Intelligence for Network Structure Analytics. Springer (2017). https://doi.org/10.1007/978-981-10-4558-5

    Book  MATH  Google Scholar 

  111. Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in networks. Phys. Rev. E 84, 056,101 (2011). https://doi.org/10.1103/PhysRevE.84.056101

    Article  Google Scholar 

  112. González, A.D., Dueñas-Osorio, L., Sánchez-Silva, M., Medaglia, A.L.: The interdependent network design problem for optimal infrastructure system restoration. Comp.-Aided Civil and Infrastruct. Engineering 31(5), 334–350 (2016). https://doi.org/10.1111/mice.12171

    Article  Google Scholar 

  113. Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics (Chapman & Hall/Crc Computer & Information Science Series). Chapman & Hall/CRC (2007)

    Google Scholar 

  114. Grohe, M.: Tangles and connectivity in graphs. In: A. Dediu, J. Janousek, C. Martín-Vide, B. Truthe (eds.) Language and Automata Theory and Applications - 10th International Conference, LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, Lecture Notes in Computer Science, vol. 9618, pp. 24–41. Springer (2016). https://doi.org/10.1007/978-3-319-30000-9_2

    Chapter  MATH  Google Scholar 

  115. Grohe, M., Marx, D.: On tree width, bramble size, and expansion. J. Comb. Theory, Ser. B 99(1), 218–228 (2009). https://doi.org/10.1016/j.jctb.2008.06.004

    Article  MathSciNet  MATH  Google Scholar 

  116. Guisado-Gámez, J., Prat-Pérez, A., Larriba-Pey, J.: Query expansion via structural motifs in wikipedia graph. CoRR abs/1602.07217 (2016). http://arxiv.org/abs/1602.07217

  117. Gurciullo, S.: Organised crime infiltration in the legitimate private economy - an empirical network analysis approach. CoRR abs/1403.5071 (2014). http://arxiv.org/abs/1403.5071

  118. Hamza, H.S., Deogun, J.S.: WDM multistage interconnection networks architectures for enhancing supernetworks switching infrastructure. In: D.A. Bader, M. Parashar, S. Varadarajan, V.K. Prasanna (eds.) High Performance Computing - HiPC 2005, 12th International Conference, Goa, India, December 18-21, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3769, pp. 444–453. Springer (2005). https://doi.org/10.1007/11602569_46

    Google Scholar 

  119. Hansberg, A., Meierling, D., Volkmann, L.: Distance domination and distance irredundance in graphs. Electr. J. Comb. 14(1) (2007). http://www.combinatorics.org/Volume_14/Abstracts/v14i1r35.html

  120. Haque, M.N., Mathieson, L., Moscato, P.: A Memetic Algorithm for community detection by maximising the Connected Cohesion. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Huawii, USA, 27 Nov-1 Dec, pp. 2475–2482. IEEE (2017). https://doi.org/10.1145/3067695.3076106

  121. Haque, M.N., Noman, N., Berretta, R., Moscato, P.: Heterogeneous ensemble combination search using genetic algorithm for class imbalanced data classification. PLOS ONE 11(1), 1–28 (2016). https://doi.org/10.1371/journal.pone.0146116

    Article  Google Scholar 

  122. Harvey, D.J., Wood, D.R.: Parameters tied to treewidth. Journal of Graph Theory 84(4), 364–385 (2017). https://doi.org/10.1002/jgt.22030

    Article  MathSciNet  MATH  Google Scholar 

  123. Haslett, G., Bullock, S., Brede, M.: Planar growth generates scale-free networks. J. Complex Networks 4(4), 500–516 (2016). https://doi.org/10.1093/comnet/cnw005

    MathSciNet  Google Scholar 

  124. Hassin, R., Meggido, N.: Approximation algorithms for hitting objects with straight lines. Discrete Applied Mathematics 30, 29–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  125. Hatano, D., Fukunaga, T., Maehara, T., Kawarabayashi, K.: Lagrangian decomposition algorithm for allocating marketing channels. In: AAAI, pp. 1144–1150. AAAI Press (2015)

    Google Scholar 

  126. Havlin, S., Kenett, D.Y., Ben-Jacob, E., Bunde, A., Cohen, R., Hermann, H., Kantelhardt, J., Kertész, J., Kirkpatrick, S., Kurths, J., et al.: Challenges in network science: Applications to infrastructures, climate, social systems and economics. The European Physical Journal Special Topics 214, 273–293 (2012)

    Article  Google Scholar 

  127. Heine, C., Leitte, H., Hlawitschka, M., Iuricich, F., Floriani, L.D., Scheuermann, G., Hagen, H., Garth, C.: A survey of topology-based methods in visualization. Comput. Graph. Forum 35(3), 643–667 (2016). https://doi.org/10.1111/cgf.12933

    Article  Google Scholar 

  128. Helm, S.: Viral marketing - establishing customer relationships by ‘word-of-mouse’. Electronic Markets 10(3), 158–161 (2000)

    Article  Google Scholar 

  129. Hicks, I.V.: Graphs, branchwidth, and tangles! oh my! Networks 45(2), 55–60 (2005). https://doi.org/10.1002/net.20050

    Article  MathSciNet  MATH  Google Scholar 

  130. Hildebrand, C., Hofstetter, R., Herrmann, A.: Modeling viral marketing dynamics in social networks - findings from computational experiments with agent-based simulation models. In: ICIS. Association for Information Systems (2012)

    Google Scholar 

  131. Holme, P.: Temporal networks. In: Encyclopedia of Social Network Analysis and Mining, pp. 2119–2129. Springer (2014). https://doi.org/10.1007/978-1-4614-6170-8_42

    Google Scholar 

  132. Holme, P., Saramäki, J.: Temporal networks. Physics Reports 519(3), 97–125 (2012). https://doi.org/10.1016/j.physrep.2012.03.001. Temporal Networks

    Article  Google Scholar 

  133. Hou, R., Wu, J., Chen, Y., Zhang, H.: Note on edge-colored graphs for networks with homogeneous faults. Comput. J. 59(10), 1470–1478 (2016). https://doi.org/10.1093/comjnl/bxw012

    Article  MathSciNet  Google Scholar 

  134. Hou, R., Wu, J., Chen, Y., Zhang, H., Sui, X.: Constructing edge-colored graph for heterogeneous networks. J. Comput. Sci. Technol. 30(5), 1154–1160 (2015). https://doi.org/10.1007/s11390-015-1551-0

    Article  MathSciNet  Google Scholar 

  135. Howlader, J., Mal, A.K.: Sealed-bid auction: a cryptographic solution to bid-rigging attack in the collusive environment. Security and Communication Networks 8(18), 3415–3440 (2015). https://doi.org/10.1002/sec.1268

    Article  Google Scholar 

  136. Hu, D., Yan, J., Algesheimer, R., Meierer, M.: Understanding moderators of peer influence for engineering viral marketing seeding simulations and strategies. In: ICIS. Association for Information Systems (2016)

    Google Scholar 

  137. Hu, J., Fang, D., Wei, X., Xie, J.: Colluder detection based on hypergraph decomposition. In: Ninth International Conference on Computational Intelligence and Security, CIS 2013, Emei Mountain, Sichan Province, China, December 14-15, 2013, pp. 630–634. IEEE Computer Society (2013). https://doi.org/10.1109/CIS.2013.138

  138. Huang, X., Lakshmanan, L.V.S., Xu, J.: Community search over big graphs: Models, algorithms, and opportunities. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pp. 1451–1454. IEEE Computer Society (2017). https://doi.org/10.1109/ICDE.2017.211

  139. Huang, Y., Dai, H.: On information spreading in multiplex networks with gossip mechanism. In: IEEE International Conference on Communications, ICC 2017, Paris, France, May 21-25, 2017, pp. 1–6. IEEE (2017). https://doi.org/10.1109/ICC.2017.7997367

  140. Iacovacci, J., Lacasa, L.: Visibility graph motifs. CoRR abs/1512.00297 (2015). http://arxiv.org/abs/1512.00297

  141. Inafuku, K., Fushimi, T., Satoh, T.: Extraction method of typical purchase patterns based on motif analysis of directed graphs. In: Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services, iiWAS ’16, pp. 86–95. ACM, New York, NY, USA (2016). https://doi.org/10.1145/3011141.3011178

  142. Inostroza-Ponta, M., Berretta, R., Mendes, A., Moscato, P.: An automatic graph layout procedure to visualize correlated data. In: M. Bramer (ed.) Artificial Intelligence in Theory and Practice: IFIP 19th World Computer Congress, TC 12: IFIP AI 2006 Stream, August 21–24, 2006, Santiago, Chile, pp. 179–188. Springer US, Boston, MA (2006). https://doi.org/10.1007/978-0-387-34747-9_19

    Chapter  Google Scholar 

  143. Inostroza-Ponta, M., Berretta, R., Moscato, P.: Qapgrid: A two level qap-based approach for large-scale data analysis and visualization. PLOS ONE 6(1), 1–18 (2011). https://doi.org/10.1371/journal.pone.0014468

    Article  Google Scholar 

  144. Jansen, B.M.: The power of data reduction: Kernels for fundamental graph problems. Ph.D. thesis, Utrecht University (2013)

    Google Scholar 

  145. Jerrum, M., Meeks, K.: The parameterised complexity of counting connected subgraphs and graph motifs. J. Comput. Syst. Sci. 81(4), 702–716 (2015). https://doi.org/10.1016/j.jcss.2014.11.015

    Article  MathSciNet  MATH  Google Scholar 

  146. Jiang, J.J., Wen, S., Yu, S., Xiang, Y., Zhou, W., Hassan, H.: The structure of communities in scale-free networks. Concurrency and Computation: Practice and Experience 29(14) (2017). https://doi.org/10.1002/cpe.4040

    Article  Google Scholar 

  147. Jimenez, F., Sanhueza, C., Berretta, R., Moscato, P.: A multi-objective approach for the (α, β)-k-feature set problem using memetic algorithms. In: P.A.N. Bosman (ed.) Genetic and Evolutionary Computation Conference, Berlin, Germany, July 15-19, 2017, Companion Material Proceedings, pp. 207–208. ACM (2017). https://doi.org/10.1145/3067695.3076106

  148. Johnson, D.: The NP-completeness column: An ongoing guide: The many faces of polynomial time. Journal of Algorithms 8(2), 285–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  149. Johnstone, D., Milward, E.A., Berretta, R., Moscato, P., for the Alzheimer’s Disease Neuroimaging Initiative: Multivariate protein signatures of pre-clinical alzheimer’s disease in the alzheimer’s disease neuroimaging initiative (adni) plasma proteome dataset. PLOS ONE 7(4), 1–17 (2012)

    Article  Google Scholar 

  150. Kabir, H., Madduri, K.: Shared-memory graph truss decomposition. CoRR abs/1707.02000 (2017). http://arxiv.org/abs/1707.02000

  151. Kaluza, P., Kölzsch, A., Gastner, M.T., Blasius, B.: The complex network of global cargo ship movements. Journal of the Royal Society Interface 7(48), 1093–1103 (2010)

    Article  Google Scholar 

  152. Kang, C., Kraus, S., Molinaro, C., Spezzano, F., Subrahmanian, V.: Diffusion centrality: A paradigm to maximize spread in social networks. Artificial Intelligence 239, 70–96 (2016). https://doi.org/10.1016/j.artint.2016.06.008

    Article  MathSciNet  MATH  Google Scholar 

  153. Kao, T., Porter, M.A.: Layer communities in multiplex networks. CoRR abs/1706.04147 (2017). http://arxiv.org/abs/1706.04147

  154. Kaple, M., Kulkarni, K., Potika, K.: Viral marketing for smart cities: Influencers in social network communities. In: Third IEEE International Conference on Big Data Computing Service and Applications, BigDataService 2017, Redwood City, CA, USA, April 6-9, 2017, pp. 106–111. IEEE (2017). https://doi.org/10.1109/BigDataService.2017.46

  155. Karami, E., Glisic, S.: Joint optimization of scheduling and routing in multicast wireless ad hoc networks using soft graph coloring and nonlinear cubic games. IEEE Trans. Vehicular Technology 60(7), 3350–3360 (2011). https://doi.org/10.1109/TVT.2011.2161355

    Article  Google Scholar 

  156. Karp, R.M.: Reducibility among combinatorial problems. In: R.E. Miller, J.W. Thatcher, J.D. Bohlinger (eds.) Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department, pp. 85–103. Springer US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  157. Kaveh-Yazdy, F., Kong, X., Li, J., Li, F., Xia, F.: Customer rating prediction using hypergraph kernel based classification. In: AMT, Lecture Notes in Computer Science, vol. 8210, pp. 187–192. Springer (2013)

    Google Scholar 

  158. Kawase, Y., Matsui, T., Miyauchi, A.: Additive approximation algorithms for modularity maximization. In: S. Hong (ed.) 27th International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Australia, LIPIcs, vol. 64, pp. 43:1–43:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.43

  159. Khan, A., Zehnder, B., Kossmann, D.: Revenue maximization by viral marketing: A social network host’s perspective. In: ICDE, pp. 37–48. IEEE Computer Society (2016). https://doi.org/10.1109/ICDE.2016.7498227

  160. Khan, B.S., Niazi, M.A.: Network community detection: A review and visual survey. CoRR abs/1708.00977 (2017). http://arxiv.org/abs/1708.00977

  161. Khor, S.: Application of graph coloring to biological networks. CoRR abs/0912.3461 (2009). http://arxiv.org/abs/0912.3461

  162. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. Journal of Complex Networks 2(3), 203–271 (2014)

    Article  Google Scholar 

  163. Krot, A.M., Prokhorenkova, L.O.: Local clustering coefficient in generalized preferential attachment models. In: D.F. Gleich, J. Komjáthy, N. Litvak (eds.) Algorithms and Models for the Web Graph - 12th International Workshop, WAW 2015, Eindhoven, The Netherlands, December 10-11, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9479, pp. 15–28. Springer (2015). https://doi.org/10.1007/978-3-319-26784-5_2

    MATH  Google Scholar 

  164. Krot, A.M., Prokhorenkova, L.O.: Assortativity in generalized preferential attachment models. In: A. Bonato, F.C. Graham, P. Pralat (eds.) Algorithms and Models for the Web Graph - 13th International Workshop, WAW 2016, Montreal, QC, Canada, December 14-15, 2016, Proceedings, Lecture Notes in Computer Science, vol. 10088, pp. 9–21 (2016). https://doi.org/10.1007/978-3-319-49787-7_2

    Article  Google Scholar 

  165. Kruskal, J.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Amer. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  166. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal independent sets at scale. Journal of Heuristics 23(4), 207–229 (2017). https://doi.org/10.1007/s10732-017-9337-x

    Article  MATH  Google Scholar 

  167. Lancia, G., Mathieson, L., Moscato, P.: Separating sets of strings by finding matching patterns is almost always hard. Theor. Comput. Sci. 665, 73–86 (2017). https://doi.org/10.1016/j.tcs.2016.12.018

    Article  MathSciNet  MATH  Google Scholar 

  168. Laura, L., Nanni, U., Temperini, M.: The organization of large-scale repositories of learning objects with directed hypergraphs. In: ICWL Workshops, Lecture Notes in Computer Science, vol. 8699, pp. 23–33. Springer (2014)

    Google Scholar 

  169. Lee, W., Kim, J., Yu, H.: CT-IC: continuously activated and time-restricted independent cascade model for viral marketing. In: ICDM, pp. 960–965. IEEE Computer Society (2012)

    Google Scholar 

  170. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web 1(1) (2007). https://doi.org/10.1145/1232722.1232727

    Article  Google Scholar 

  171. Leskovec, J., Sosič, R.: Snap: Stanford network analysis platform (2013)

    Google Scholar 

  172. Li, D., Xu, Z., Li, S., Sun, X.: Link prediction in social networks based on hypergraph. In: L. Carr, A.H.F. Laender, B.F. Lóscio, I. King, M. Fontoura, D. Vrandecic, L. Aroyo, J.P.M. de Oliveira, F. Lima, E. Wilde (eds.) 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume, pp. 41–42. International World Wide Web Conferences Steering Committee / ACM (2013). http://dl.acm.org/citation.cfm?id=2487802

  173. Li, L., Li, T.: News recommendation via hypergraph learning: encapsulation of user behavior and news content. In: S. Leonardi, A. Panconesi, P. Ferragina, A. Gionis (eds.) Sixth ACM International Conference on Web Search and Data Mining, WSDM 2013, Rome, Italy, February 4-8, 2013, pp. 305–314. ACM (2013). https://doi.org/10.1145/2433396.2433436

  174. Li, M., Zhao, C., Tang, J.: Hybrid image summarization by hypergraph partition. Neurocomputing 119, 41–48 (2013)

    Article  Google Scholar 

  175. Li, X., Huang, L.: Evaluation of software architectures reliability based on hypergraph grammar. In: 37th Annual IEEE Computer Software and Applications Conference, COMPSAC 2013, Kyoto, Japan, July 22-26, 2013, pp. 601–602. IEEE Computer Society (2013). https://doi.org/10.1109/COMPSAC.2013.95

  176. Li, X., Smith, J.D., Dinh, T.N., Thai, M.T.: Why approximate when you can get the exact? optimal targeted viral marketing at scale. CoRR abs/1701.08462 (2017)

    Google Scholar 

  177. Li, Y., Guo, C.: Hypergraph-based spectral clustering for categorical data. In: Seventh International Conference on Advanced Computational Intelligence, ICACI 2015, Wuyi, China, March 27-29, 2015, pp. 396–401. IEEE (2015). https://doi.org/10.1109/ICACI.2015.7184738

  178. Li, Y., Li, Y., Zhang, B., Shen, H.: Preserving private cloud service data based on hypergraph anonymization. In: 2013 International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 192–197 (2013). https://doi.org/10.1109/PDCAT.2013.37

  179. Li, Y., Shen, H.: On identity disclosure control for hypergraph-based data publishing. IEEE Trans. Information Forensics and Security 8(8), 1384–1396 (2013)

    Article  Google Scholar 

  180. Liao, F.: Modeling duration choice in space-time multi-state supernetworks for individual activity-travel scheduling. Transportation Research Part C: Emerging Technologies 69, 16–35 (2016). https://doi.org/10.1016/j.trc.2016.05.011

    Article  Google Scholar 

  181. Liao, F., Arentze, T., Timmermans, H.: Multi-state supernetworks: recent progress and prospects. Journal of Traffic and Transportation Engineering (English Edition) 1(1), 13–27 (2014). https://doi.org/10.1016/S2095-7564(15)30085-4

    Article  Google Scholar 

  182. Liao, F., Arentze, T.A., Timmermans, H.J.P.: Constructing personalized transportation networks in multi-state supernetworks: a heuristic approach. International Journal of Geographical Information Science 25(11), 1885–1903 (2011). https://doi.org/10.1080/13658816.2011.556119

    Article  Google Scholar 

  183. Liao, F., Rasouli, S., Timmermans, H.J.P.: Incorporating activity-travel time uncertainty and stochastic space-time prisms in multistate supernetworks for activity-travel scheduling. International Journal of Geographical Information Science 28(5), 928–945 (2014). https://doi.org/10.1080/13658816.2014.887086

    Article  Google Scholar 

  184. Lim, E.P., Chen, H., Chen, G.: Business intelligence and analytics: Research directions. ACM Transactions on Management Information Systems (TMIS) 3(4), 17 (2013)

    Article  Google Scholar 

  185. Lipton, Z.C.: Does deep learning come from the devil? https://goo.gl/p9KyZG (2015). (Accessed on 14/12/2017)

  186. Liu, F., Yang, L.: A novel cell detection method using deep convolutional neural network and maximum-weight independent set. In: L. Lu, Y. Zheng, G. Carneiro, L. Yang (eds.) Deep Learning and Convolutional Neural Networks for Medical Image Computing - Precision Medicine, High Performance and Large-Scale Datasets, Advances in Computer Vision and Pattern Recognition, pp. 63–72. Springer (2017). https://doi.org/10.1007/978-3-319-42999-1_5

    Chapter  Google Scholar 

  187. Liu, G., Wong, L.: Effective pruning techniques for mining quasi-cliques. In: ECML/PKDD (2), Lecture Notes in Computer Science, vol. 5212, pp. 33–49. Springer (2008)

    Google Scholar 

  188. Liu, P., Liao, F., Huang, H.J., Timmermans, H.: Dynamic activity-travel assignment in multi-state supernetworks. Transportation Research Procedia 7, 24–43 (2015). https://doi.org/10.1016/j.trpro.2015.06.002. 21st International Symposium on Transportation and Traffic Theory Kobe, Japan, 5-7 August, 2015

    Article  Google Scholar 

  189. Liu, P., Liao, F., Huang, H.J., Timmermans, H.: Dynamic activity-travel assignment in multi-state supernetworks under transport and location capacity constraints. Transportmetrica A: Transport Science 12(7), 572–590 (2016). https://doi.org/10.1080/23249935.2016.1189739

    Article  Google Scholar 

  190. Liu, Q., Fang, J.Q., Li, Y.: Some characteristics of supernetworks based on unified hybrid network theory framework. International Journal of Modern Physics C 28(05), 1750,057 (2017). https://doi.org/10.1142/S0129183117500577

    Article  Google Scholar 

  191. Liu, Y., Shao, J., Xiao, J., Wu, F., Zhuang, Y.: Hypergraph spectral hashing for image retrieval with heterogeneous social contexts. Neurocomputing 119, 49–58 (2013)

    Article  Google Scholar 

  192. Liu, Z., Nagurney, A.: Financial networks with intermediation and transportation network equilibria: A supernetwork equivalence and reinterpretation of the equilibrium conditions with computations. Comput. Manag. Science 4(3), 243–281 (2007). https://doi.org/10.1007/s10287-006-0010-3

    Article  MathSciNet  MATH  Google Scholar 

  193. Long, C., Wong, R.C.: Minimizing seed set for viral marketing. In: 2011 IEEE 11th International Conference on Data Mining, pp. 427–436 (2011). https://doi.org/10.1109/ICDM.2011.99

  194. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010). https://doi.org/10.1016/j.ejor.2009.07.016

    Article  MathSciNet  MATH  Google Scholar 

  195. Lu, Z., Zhou, H., Li, V.O.K., Long, Y.: Pricing game of celebrities in sponsored viral marketing in online social networks with a greedy advertising platform. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016). https://doi.org/10.1109/ICC.2016.7511396

  196. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)

    Article  Google Scholar 

  197. Ma’ayan, A., Cecchi, G.A., Wagner, J., Rao, A.R., Iyengar, R., Stolovitzky, G.: Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks. Proceedings of the National Academy of Sciences 105(49), 19,235–19,240 (2008). https://doi.org/10.1073/pnas.0805344105

    Article  Google Scholar 

  198. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed networks: A survey. Physics Reports 533(4), 95–142 (2013). https://doi.org/10.1016/j.physrep.2013.08.002. Clustering and Community Detection in Directed Networks: A Survey

    Article  MathSciNet  MATH  Google Scholar 

  199. Marshak, C.Z.: Applications of network science to criminal networks, university education, and ecology. Ph.D. thesis, University of California, Los Angeles, USA (2017). http://www.escholarship.org/uc/item/6zs7394q

  200. Mathieson, L., Mendes, A., Marsden, J., Pond, J., Moscato, P.: Computer-aided breast cancer diagnosis with optimal feature sets: Reduction rules and optimization techniques. In: J.M. Keith (ed.) Bioinformatics: Volume II: Structure, Function, and Applications, pp. 299–325. Springer New York, New York, NY (2017). https://doi.org/10.1007/978-1-4939-6613-4_17

    Chapter  Google Scholar 

  201. McGuire, G., Tugemann, B., Civario, G.: There is no 16-clue sudoku: Solving the sudoku minimum number of clues problem via hitting set enumeration. Experimental Mathematics 23(2), 190–217 (2014). https://doi.org/10.1080/10586458.2013.870056

    Article  MathSciNet  MATH  Google Scholar 

  202. McNabb, L., Laramee, R.S.: Survey of surveys (sos) - mapping the landscape of survey papers in information visualization. Comput. Graph. Forum 36(3), 589–617 (2017). https://doi.org/10.1111/cgf.13212

    Article  Google Scholar 

  203. Meghanathan, N.: Correlation analysis between maximal clique size and centrality metrics for random networks and scale-free networks. Computer and Information Science 9(2), 41–57 (2016). https://doi.org/10.5539/cis.v9n2p41

    Article  MathSciNet  Google Scholar 

  204. Mellor, D., Prieto, E., Mathieson, L., Moscato, P.: A kernelisation approach for multiple d-hitting set and its application in optimal multi-drug therapeutic combinations. PLOS ONE 5(10), 1–13 (2010). https://doi.org/10.1371/journal.pone.0013055

    Article  Google Scholar 

  205. Meyer, H., Schering, A., Heuer, A.: The hydra.powergraph system - building digital archives with directed and typed hypergraphs. Datenbank-Spektrum 17(2), 113–129 (2017). https://doi.org/10.1007/s13222-017-0253-x

    Article  Google Scholar 

  206. Miao, H., Liu, X., Huang, B., Getoor, L.: A hypergraph-partitioned vertex programming approach for large-scale consensus optimization. In: BigData Conference, pp. 563–568. IEEE (2013)

    Google Scholar 

  207. Miao, Z., Balasundaram, B.: Approaches for finding cohesive subgroups in large-scale social networks via maximum k-plex detection. Networks 69(4), 388–407 (2017)

    Article  MathSciNet  Google Scholar 

  208. Michael, R.G., David, S.J.: Computers and intractability: a guide to the theory of np-completeness. WH Free. Co., San Fr pp. 90–91 (1979)

    Google Scholar 

  209. Michalak, K., Korczak, J.J.: Graph mining approach to suspicious transaction detection. In: M. Ganzha, L.A. Maciaszek, M. Paprzycki (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS 2011, Szczecin, Poland, 18-21 September 2011, Proceedings, pp. 69–75 (2011). http://ieeexplore.ieee.org/document/6078254/

  210. Mohite, M., Narahari, Y.: Incentive compatible influence maximization in social networks and application to viral marketing. CoRR abs/1102.0918 (2011)

    Google Scholar 

  211. Mohite, M., Narahari, Y.: Incentive compatible influence maximization in social networks and application to viral marketing. In: AAMAS, pp. 1081–1082. IFAAMAS (2011)

    Google Scholar 

  212. Mokken, R.J.: Cliques, clubs and clans. Quality and Quantity 13, 161–173 (1979)

    Article  Google Scholar 

  213. Molnár, B.: Applications of Hypergraphs in Informatics: A Survey and Opportunities for Research, vol. 42, pp. 261–282 (2014)

    Google Scholar 

  214. Moreno, J.: Who Shall Survive? A New Approach to the Problem of Human Interrelations. No. 58 in Nervous and Mental Disease Publishing. Nervous and Mental Disease Publishing Co., Washington D.C. (1934)

    Google Scholar 

  215. Morselli, C., Boivin, R.: Introduction to the special issue on crime and networks. Social Networks 51, 1–2 (2017). https://doi.org/10.1016/j.socnet.2017.08.005

    Article  Google Scholar 

  216. Moscato, P., Berretta, R., Hourani, M., Mendes, A., Cotta, C.: Genes related with alzheimer’s disease: A comparison of evolutionary search, statistical and integer programming approaches. In: F. Rothlauf, J. Branke, S. Cagnoni, D.W. Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero, G.D. Smith, G. Squillero (eds.) Applications of Evolutionary Computing, EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, Lausanne, Switzerland, March 30 - April 1, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3449, pp. 84–94. Springer (2005). https://doi.org/10.1007/978-3-540-32003-6_9

    Google Scholar 

  217. Moscato, P., Mathieson, L., Mendes, A., Berretta, R.: The electronic primaries: Predicting the U.S. presidency using feature selection with safe data reduction. In: Estivill-Castro [85], pp. 371–380. http://crpit.com/confpapers/CRPITV38Moscato.pdf

  218. Murthy, V.K., Krishnamurthy, E.V.: Learning to capture the functions of genetic regulatory networks using graph motifs. IJAIP 4(2), 185–197 (2012). https://doi.org/10.1504/IJAIP.2012.048146

    Article  Google Scholar 

  219. Mylonakis, N., Orejas, F., Fiadeiro, J.L.: A semantics of business configurations using symbolic graphs. In: SCC, pp. 146–153. IEEE Computer Society (2015)

    Google Scholar 

  220. Naeni, L.M., Berretta, R., Moscato, P.: Ma-net: A reliable memetic algorithm for community detection by modularity optimization. In: H. Handa, H. Ishibuchi, Y.S. Ong, K.C. Tan (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1, pp. 311–323. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-13359-1_25

    Google Scholar 

  221. Naeni, L.M., de Vries, N.J., Reis, R., Arefin, A.S., Berretta, R., Moscato, P.: Identifying communities of trust and confidence in the charity and not-for-profit sector: A memetic algorithm approach. In: 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, BDCloud 2014, Sydney, Australia, December 3-5, 2014, pp. 500–507. IEEE Computer Society (2014). https://doi.org/10.1109/BDCloud.2014.83

  222. Nagurney, A.: Supernetworks. In: M.G.C. Resende, P.M. Pardalos (eds.) Handbook of Optimization in Telecommunications, pp. 1073–1119. Springer (2006). https://doi.org/10.1007/978-0-387-30165-5_37

  223. Nagurney, A., Cruz, J., Matsypura, D.: Dynamics of global supply chain supernetworks. Mathematical and Computer Modelling 37(9), 963–983 (2003). https://doi.org/10.1016/S0895-7177(03)00112-2.

    Article  MathSciNet  MATH  Google Scholar 

  224. Nagurney, A., Cruz, J., Matsypura, D.: Dynamics of global supply chain supernetworks. Mathematical and Computer Modelling 37(9), 963–983 (2003). https://doi.org/10.1016/S0895-7177(03)00112-2

    Article  MathSciNet  MATH  Google Scholar 

  225. Nagurney, A., Dong, J.: Supernetworks: Decision-Making for the Information Age. Elgar, Edward Publishing, Incorporated (2002)

    Google Scholar 

  226. Nagurney, A., Dong, J.: Management of knowledge intensive systems as supernetworks: Modeling, analysis, computations, and applications. Mathematical and Computer Modelling 42(3-4), 397–417 (2005). https://doi.org/10.1016/j.mcm.2004.01.015

    Article  MathSciNet  MATH  Google Scholar 

  227. Naik, S.A., Yu, Q.: Maximizing influence of viral marketing via evolutionary user selection. In: ASONAM, pp. 1435–1436. ACM (2013)

    Google Scholar 

  228. Natschläger, C., Geist, V., Illibauer, C., Hutter, R.: Modelling business process variants using graph transformation rules. In: S. Hammoudi, L.F. Pires, B. Selic, P. Desfray (eds.) MODELSWARD 2016 - Proceedings of the 4rd International Conference on Model-Driven Engineering and Software Development, Rome, Italy, 19-21 February, 2016., pp. 65–74. SciTePress (2016). https://doi.org/10.5220/0005665800650074

  229. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233(1), 3–36 (2001). https://doi.org/10.1016/S0012-365X(00)00224-7. Czech and Slovak 2

    Article  MathSciNet  MATH  Google Scholar 

  230. Newman, M.E.: Fast algorithm for detecting community structure in networks. Physical review E 69(6), 066,133 (2004)

    Article  Google Scholar 

  231. Newman, M.E.: Modularity and community structure in networks. Proc Natl Acad Sci U S A 103(23), 8577–8582 (2006). https://doi.org/10.1073/pnas.0601602103. http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16723398&dopt=AbstractPlus

    Article  Google Scholar 

  232. Newman, M.E.: Modularity and community structure in networks. Proceedings of the national academy of sciences 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  233. Nešetřil, J., Nešetřilová, H.: The origins of minimal spanning tree algorithms - Borůvka and Jarník. Documenta Mathematica - Extra Volume ISMP pp. 127– 141 (2012)

    Google Scholar 

  234. Nguyen, H.T., Dinh, T.N., Thai, M.T.: Cost-aware targeted viral marketing in billion-scale networks. In: INFOCOM, pp. 1–9. IEEE (2016). https://doi.org/10.1109/INFOCOM.2016.7524377

  235. Niedermeier, R.: Some prospects for efficient fixed parameter algorithms. In: B. Rovan (ed.) Theory and Practice of Informatics, Seminar on Current Trends in Theory and Practice of Informatics, vol. 1521, pp. 168–185. Springer-Verlag (1998)

    Google Scholar 

  236. Niedermeier, R.: Ubiquitous parameterization - invitation to fixed-parameter algorithms. In: Mathematical Foundations of Computer Science 2004, 29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings, pp. 84–103 (2004). https://doi.org/10.1007/978-3-540-28629-5_4

    Google Scholar 

  237. Niedermeier, R., Rossmanith, P.: An efficient fixed parameter algorithm for 3-hitting set. Tech. Rep. WSI-99-18, Universität Tübingen, Wilhelm-Schickard-Institut für Informatik (1999). Technical Report, Revised version accepted in Journal of Discrete Algorithms, August 2000

    Google Scholar 

  238. Niedermeier, R., Rossmanith, P.: Upper bounds for vertex cover futher improved. In: STACS ’99, vol. 1563, pp. 561–570. Springer-Verlag (1999)

    Google Scholar 

  239. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73, 125–129 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  240. Omodei, E., de Domenico, M., Arenas, A.: Evaluating the impact of interdisciplinary research: A multilayer network approach. Network Science 5(2), 235?246 (2017). https://doi.org/10.1017/nws.2016.15

    Article  Google Scholar 

  241. Opuszko, M., Ruhland, J.: Effects of the network structure on the dynamics of viral marketing. In: Wirtschaftsinformatik, p. 94 (2013)

    Google Scholar 

  242. Ostroumova Prokhorenkova, L.: General results on preferential attachment and clustering coefficient. Optimization Letters 11(2), 279–298 (2017). https://doi.org/10.1007/s11590-016-1030-8

    Article  MathSciNet  MATH  Google Scholar 

  243. Pajouh, F.M., Miao, Z., Balasundaram, B.: A branch-and-bound approach for maximum quasi-cliques. Annals OR 216(1), 145–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  244. Paoletti, T.: Leonard euler’s solution to the konigsberg bridge problem — mathematical association of america. https://goo.gl/Xeo1uL (2011). (Accessed on 14/12/2017)

  245. Papadimitriou, C., Yannakakis, M.: On limited nondeterminism and the complexity of the V-C dimension. In: J. Allender, Eric; Beigel, Richard; Cai, Jin-yi; Feigenbaum, Joan; Homer, Steven; Lange, Klaus-Jörn; Lutz, Jack; Mahaney, Stephen; Straubing, Howard; Torán (ed.) Proceedings of the 8th Annual Conference on Structure in Complexity Theory (SCTC ’93), pp. 12–18. IEEE Computer Society Press, San Diego, CA, USA (1993)

    Google Scholar 

  246. Papadimitriou, C., Yannakakis, M.: On limited nondeterminism and the complexity of the V-C dimension. Journal of Computer and System Sciences 53(2), 161–170 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  247. Pardalos, P.M., Rebennack, S.: Computational challenges with cliques, quasi-cliques and clique partitions in graphs. In: SEA, Lecture Notes in Computer Science, vol. 6049, pp. 13–22. Springer (2010)

    Google Scholar 

  248. Patrignani, M.: Planarity testing and embedding. In: Handbook of Graph Drawing and Visualization, pp. 1–42. Chapman and Hall/CRC (2013)

    Google Scholar 

  249. Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On the maximum quasi-clique problem. Discrete Applied Mathematics 161(1), 244–257 (2013). https://doi.org/10.1016/j.dam.2012.07.019

    Article  MathSciNet  MATH  Google Scholar 

  250. Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On the maximum quasi-clique problem. Discrete Applied Mathematics 161(1-2), 244–257 (2013). https://doi.org/10.1016/j.dam.2012.07.019

    Article  MathSciNet  MATH  Google Scholar 

  251. Pattillo, J., Youssef, N., Butenko, S.: On clique relaxation models in network analysis. European Journal of Operational Research 226(1), 9–18 (2013). https://doi.org/10.1016/j.ejor.2012.10.021

    Article  MathSciNet  MATH  Google Scholar 

  252. de Paula, M.R., Berretta, R., Moscato, P.: A fast meta-heuristic approach for the (α, β)-k-feature set problem. J. Heuristics 22(2), 199–220 (2016). https://doi.org/10.1007/s10732-015-9307-0

    Article  Google Scholar 

  253. Peixoto, T.P.: The graph-tool python library. figshare (2014)

    Google Scholar 

  254. Penny, R., Bowles, R., Bouhana, N.: Social network modelling for counter extremism - comparing criminality in two activist networks. In: SIMULTECH 2013 - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Reykjavík, Iceland, 29-31 July, 2013, pp. 382–388 (2013). https://doi.org/10.5220/0004586403820388

  255. Pham, C.V., Thai, M.T., Ha, D., Ngo, D.Q., Hoang, H.X.: Time-critical viral marketing strategy with the competition on online social networks. In: H.T. Nguyen, V. Snasel (eds.) Computational Social Networks: 5th International Conference, CSoNet 2016, Ho Chi Minh City, Vietnam, August 2-4, 2016, Proceedings, pp. 111–122. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-42345-6_10

    Chapter  Google Scholar 

  256. Polyvyanyy, A., Weske, M.: Hypergraph-based modeling of ad-hoc business processes. In: D. Ardagna, M. Mecella, J. Yang (eds.) Business Process Management Workshops: BPM 2008 International Workshops, Milano, Italy, September 1-4, 2008. Revised Papers, pp. 278–289. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8_27

    Chapter  Google Scholar 

  257. Prim, R.: The shortest connecting network and some generalization. Bell Systems Tech. J. 36, 1389?1401 (1957)

    Google Scholar 

  258. Prokhorenkova, L.O.: Global clustering coefficient in scale-free weighted and unweighted networks. Internet Mathematics 12(1-2), 54–67 (2016). https://doi.org/10.1080/15427951.2015.1092482

    Article  MathSciNet  Google Scholar 

  259. Prokhorenkova, L.O., Samosvat, E.: Global clustering coefficient in scale-free networks. In: A. Bonato, F.C. Graham, P. Pralat (eds.) Algorithms and Models for the Web Graph - 11th International Workshop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings, Lecture Notes in Computer Science, vol. 8882, pp. 47–58. Springer (2014). https://doi.org/10.1007/978-3-319-13123-8_5

    MATH  Google Scholar 

  260. Puthiyedth, N., Riveros, C., Berretta, R., Moscato, P.: A new combinatorial optimization approach for integrated feature selection using different datasets: A prostate cancer transcriptomic study. PLOS ONE 10(6), 1–26 (2015). https://doi.org/10.1371/journal.pone.0127702

    Article  Google Scholar 

  261. Puthiyedth, N., Riveros, C., Berretta, R., Moscato, P.: Identification of differentially expressed genes through integrated study of alzheimer?s disease affected brain regions. PLOS ONE 11(4), 1–29 (2016). https://doi.org/10.1371/journal.pone.0152342

    Article  Google Scholar 

  262. Qiao, Y., Wu, J., Zhang, L., Wang, C.: Viral marketing for digital goods in social networks. In: L. Chen, C.S. Jensen, C. Shahabi, X. Yang, X. Lian (eds.) Web and Big Data: First International Joint Conference, APWeb-WAIM 2017, Beijing, China, July 7–9, 2017, Proceedings, Part I, pp. 377–390. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-63579-8_29

    Chapter  Google Scholar 

  263. Radivojevic, M., Grujic, J.: Community structure of copper supply networks in the prehistoric balkans: An independent evaluation of the archaeological record from the 7th to the 4th millennium BC. CoRR abs/1705.05406 (2017). http://arxiv.org/abs/1705.05406

  264. Raeder, T., Chawla, N.V.: Market basket analysis with networks. Social Netw. Analys. Mining 1(2), 97–113 (2011). https://doi.org/10.1007/s13278-010-0003-7

    Article  Google Scholar 

  265. Rahman, A., Poirel, C.L., Badger, D., Estep, C., Murali, T.M.: Reverse engineering molecular hypergraphs. IEEE/ACM Trans. Comput. Biology Bioinform. 10(5), 1113–1124 (2013)

    Article  Google Scholar 

  266. Ramaswamy, M., Sarkar, S., Chen, Y.: Using directed hypergraphs to verity rule-based expert systems. IEEE Trans. Knowl. Data Eng. 9(2), 221–237 (1997)

    Article  Google Scholar 

  267. Rapoport, A.: Contribution to the theory of random and biased nets. The bulletin of mathematical biophysics 19(4), 257–277 (1957). https://doi.org/10.1007/BF02478417

    Article  MathSciNet  Google Scholar 

  268. Redmond, U., Harrigan, M., Cunningham, P.: Mining dense structures to uncover anomalous behaviour in financial network data. In: M. Atzmueller, A. Chin, D. Helic, A. Hotho (eds.) Modeling and Mining Ubiquitous Social Media - International Workshops MSM 2011, Boston, MA, USA, October 9, 2011, and MUSE 2011, Athens, Greece, September 5, 2011, Revised Selected Papers, Lecture Notes in Computer Science, vol. 7472, pp. 60–76. Springer (2011). https://doi.org/10.1007/978-3-642-33684-3_4

    Chapter  Google Scholar 

  269. Reeves-Latour, M., Morselli, C.: Bid-rigging networks and state-corporate crime in the construction industry. Social Networks 51, 158–170 (2017). https://doi.org/10.1016/j.socnet.2016.10.003

    Article  Google Scholar 

  270. Richardson, M., Domingos, P.M.: Mining knowledge-sharing sites for viral marketing. In: KDD, pp. 61–70. ACM (2002)

    Google Scholar 

  271. Riveros, C., Mellor, D., Gandhi, K.S., McKay, F.C., Cox, M.B., Berretta, R., Vaezpour, S.Y., Inostroza-Ponta, M., Broadley, S.A., Heard, R.N., Vucic, S., Stewart, G.J., Williams, D.W., Scott, R.J., Lechner-Scott, J., Booth, D.R., Moscato, P., for the ANZgene Multiple Sclerosis Genetics Consortium: A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mrna transcriptome in multiple sclerosis. PLOS ONE 5(12), 1–28 (2010). https://doi.org/10.1371/journal.pone.0014176

    Article  Google Scholar 

  272. Rizzi, R., Mahata, P., Mathieson, L., Moscato, P.: Hierarchical clustering using the arithmetic-harmonic cut: Complexity and experiments. PLOS ONE 5(12), 1–8 (2010). https://doi.org/10.1371/journal.pone.0014067

    Article  Google Scholar 

  273. Rodrigues, H.S., Fonseca, M.J.: Viral marketing as epidemiological model. CoRR abs/1507.06986 (2015)

    Google Scholar 

  274. Rodrigues, H.S., Fonseca, M.J.: Can information be spread as a virus? viral marketing as epidemiological model. CoRR abs/1611.04529 (2016)

    Google Scholar 

  275. Rosen, K.H.: Discrete Mathematics and Its Applications, 5th edn. McGraw-Hill Higher Education (2002)

    Google Scholar 

  276. Rosso, O.A., Mendes, A., Berretta, R., Rostas, J.A., Hunter, M., Moscato, P.: Distinguishing childhood absence epilepsy patients from controls by the analysis of their background brain electrical activity (ii): A combinatorial optimization approach for electrode selection. Journal of Neuroscience Methods 181(2), 257–267 (2009). https://doi.org/10.1016/j.jneumeth.2009.04.028

    Article  Google Scholar 

  277. Sabar, N.R., Ayob, M., Qu, R., Kendall, G.: A graph coloring constructive hyper-heuristic for examination timetabling problems. Appl. Intell. 37(1), 1–11 (2012). https://doi.org/10.1007/s10489-011-0309-9

    Article  Google Scholar 

  278. Sadasivam, G.S., Saranya, K.G., Karrthik, K.G.: Hypergraph-based wikipedia search with semantics. IJWS 2(1/2), 66–79 (2013)

    Article  Google Scholar 

  279. Samuel, É.: Recherche de motifs dans des images : apport des graphes plans. (searching for patterns in images : what plane graphs can bring). Ph.D. thesis, Jean Monnet University, Saint-Étienne, France (2011). https://tel.archives-ouvertes.fr/tel-00719187

  280. Schiller, B., Jager, S., Hamacher, K., Strufe, T.: Stream - A stream-based algorithm for counting motifs in dynamic graphs. In: A. Dediu, F.H. Quiroz, C. Martín-Vide, D.A. Rosenblueth (eds.) Algorithms for Computational Biology - Second International Conference, AlCoB 2015, Mexico City, Mexico, August 4-5, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9199, pp. 53–67. Springer (2015). https://doi.org/10.1007/978-3-319-21233-3_5

    Chapter  Google Scholar 

  281. Schlauch, W.E.: Analysis of different random graph models in the identification of network motifs in complex networks. Ph.D. thesis, Kaiserslautern University of Technology, Germany (2017). https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4615

  282. Schult, D.A., Swart, P.: Exploring network structure, dynamics, and function using networkx. In: Proceedings of the 7th Python in Science Conferences (SciPy 2008), vol. 2008, pp. 11–16 (2008)

    Google Scholar 

  283. Seidman, S.B., Foster, B.L.: A graph theoretic generalization of the clique concept. The Journal of Mathematical Sociology 6(1), 139–154 (1978). https://doi.org/10.1080/0022250X.1978.9989883

    Article  MathSciNet  MATH  Google Scholar 

  284. Shadoan, R., Weaver, C.: Visual analysis of higher-order conjunctive relationships in multidimensional data using a hypergraph query system. IEEE Trans. Vis. Comput. Graph. 19(12), 2070–2079 (2013)

    Article  Google Scholar 

  285. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  286. Shen, H., Lv, S., Dong, X., Deng, J., Wang, X., Zhou, X.: Hypergraph modeling and approximation algorithms for the minimum length link scheduling in multiuser MIMO networks. J. Applied Mathematics 2013, 982,713:1–982,713:9 (2013)

    Google Scholar 

  287. Simha, R., Tripathi, R., Thakur, M.: Mining associations using directed hypergraphs. In: ICDE Workshops, pp. 190–197. IEEE Computer Society (2012)

    Google Scholar 

  288. Smith, J.C., Ulusal, E., Hicks, I.V.: A combinatorial optimization algorithm for solving the branchwidth problem. Comp. Opt. and Appl. 51(3), 1211–1229 (2012). https://doi.org/10.1007/s10589-011-9397-z

    Article  MathSciNet  MATH  Google Scholar 

  289. Solé-Ribalta, A., Domenico, M.D., Gómez, S., Arenas, A.: Random walk centrality in interconnected multilayer networks. CoRR abs/1506.07165 (2015). http://arxiv.org/abs/1506.07165

  290. Solé-Ribalta, A., Gómez, S., Arenas, A.: Congestion induced by the structure of multiplex networks. CoRR abs/1602.07474 (2016). http://arxiv.org/abs/1602.07474

  291. Sonuc, S.B., Smith, J.C., Hicks, I.V.: A branch-and-price-and-cut method for computing an optimal bramble. Discrete Optimization 18, 168–188 (2015). https://doi.org/10.1016/j.disopt.2015.09.005

    Article  MathSciNet  MATH  Google Scholar 

  292. Soramäki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of interbank payment flows. Physica A: Statistical Mechanics and its Applications 379(1), 317–333 (2007). https://doi.org/10.1016/j.physa.2006.11.093

    Article  Google Scholar 

  293. Spadon, G., Scabora, L.C., Araujo, M.V.S., Oliveira, P.H., Machado, B.B., de Sousa, E.P.M., Jr., C.T., Jr., J.F.R.: Complex network tools to understand the behavior of criminality in urban areas. CoRR abs/1612.06115 (2016). http://arxiv.org/abs/1612.06115

  294. Srihari, S., Ng, H.K., Ning, K., Leong, H.W.: Detecting hubs and quasi cliques in scale-free networks. In: ICPR, pp. 1–4. IEEE Computer Society (2008)

    Google Scholar 

  295. Srivastava, A.: Motif analysis in the amazon product co-purchasing network. CoRR abs/1012.4050 (2010). http://arxiv.org/abs/1012.4050

  296. Stavropoulos, E.C., Verykios, V.S., Kagklis, V.: A transversal hypergraph approach for the frequent itemset hiding problem. Knowledge and Information Systems 47(3), 625–645 (2016). https://doi.org/10.1007/s10115-015-0862-3

    Article  Google Scholar 

  297. Stell, J.G.: Formal concept analysis over graphs and hypergraphs. In: M. Croitoru, S. Rudolph, S. Woltran, C. Gonzales (eds.) Graph Structures for Knowledge Representation and Reasoning - Third International Workshop, GKR 2013, Beijing, China, August 3, 2013. Revised Selected Papers, Lecture Notes in Computer Science, vol. 8323, pp. 165–179. Springer (2013). https://doi.org/10.1007/978-3-319-04534-4_11

    Google Scholar 

  298. Strehl, A., Ghosh, J.: Cluster ensembles — A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  299. Subramani, M.R., Rajagopalan, B.: Knowledge-sharing and influence in online social networks via viral marketing. Commun. ACM 46(12), 300–307 (2003)

    Article  Google Scholar 

  300. Sun, X.Q., Shen, H.W., Cheng, X.Q., Zhang, Y.: Detecting anomalous traders using multi-slice network analysis. Physica A: Statistical Mechanics and its Applications 473(Supplement C), 1–9 (2017). https://doi.org/10.1016/j.physa.2016.12.052

    Article  Google Scholar 

  301. Tang, J., Tang, X., Yuan, J.: Profit maximization for viral marketing in online social networks. In: ICNP, pp. 1–10. IEEE Computer Society (2016). https://doi.org/10.1109/ICNP.2016.7784445

  302. Taramasco, C., Cointet, J.P., Roth, C.: Academic team formation as evolving hypergraphs. Scientometrics 85(3), 721–740 (2010). https://doi.org/10.1007/s11192-010-0226-4

    Article  Google Scholar 

  303. Tayebi, M.A., Glässer, U.: Social Network Analysis in Predictive Policing - Concepts, Models and Methods. Lecture Notes in Social Networks. Springer (2016). https://doi.org/10.1007/978-3-319-41492-8

    Book  Google Scholar 

  304. Theodoridis, A., Kotropoulos, C., Panagakis, Y.: Music recommendation using hypergraphs and group sparsity. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pp. 56–60. IEEE (2013). https://doi.org/10.1109/ICASSP.2013.6637608

  305. Thomassen, C.: Kuratowski’s theorem. Journal of Graph Theory 5(3), 225–241 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  306. Thomassen, C.: The graph genus problem is np-complete. J. Algorithms 10(4), 568–576 (1989). https://doi.org/10.1016/0196-6774(89)90006-0

    Article  MathSciNet  MATH  Google Scholar 

  307. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science 363(1), 28–42 (2006). https://doi.org/10.1016/j.tcs.2006.06.015. Computing and Combinatorics

    Article  MathSciNet  MATH  Google Scholar 

  308. Torres, L.M., Wagler, A.K.: Analyzing the dynamics of deterministic systems from a hypergraph theoretical point of view. RAIRO - Operations Research 47(3), 321–330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  309. Tsourakakis, C.E., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.A.: Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In: KDD, pp. 104–112. ACM (2013)

    Google Scholar 

  310. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag New York, Inc., New York, NY, USA (2001)

    MATH  Google Scholar 

  311. Veremyev, A., Prokopyev, O.A., Butenko, S., Pasiliao, E.L.: Exact mip-based approaches for finding maximum quasi-cliques and dense subgraphs. Comp. Opt. and Appl. 64(1), 177–214 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  312. Vieira, M.E.S., López-Ardao, J.C., Fernández-Veiga, M., Rodríguez-Pérez, M., López-García, C.: Mining relationships in learning-oriented social networks. Comp. Applic. in Engineering Education 25(5), 769–784 (2017). https://doi.org/10.1002/cae.21835

    Article  Google Scholar 

  313. Villalobos-Cid, M., Chacón, M., Zitko, P., Inostroza-Ponta, M.: A new strategy to evaluate technical efficiency in hospitals using homogeneous groups of casemix. Journal of Medical Systems 40(4), 103 (2016). https://doi.org/10.1007/s10916-016-0458-9

    Article  Google Scholar 

  314. Vörös, A., Snijders, T.A.: Cluster analysis of multiplex networks: Defining composite network measures. Social Networks 49(Supplement C), 93–112 (2017). https://doi.org/10.1016/j.socnet.2017.01.002

    Article  Google Scholar 

  315. Wakolbinger, T., Nagurney, A.: Dynamic supernetworks for the integration of social networks and supply chains with electronic commerce: modeling and analysis of buyer–seller relationships with computations. NETNOMICS: Economic Research and Electronic Networking 6(2), 153–185 (2004). https://doi.org/10.1007/s11066-004-4339-x

    Article  Google Scholar 

  316. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012). http://vldb.org/pvldb/vol5/p812_jiawang_vldb2012.pdf

    Google Scholar 

  317. Wang, L., Liu, S., Pan, L., Wu, L., Meng, X.: Enterprise relationship network: Build foundation for social business. In: 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, June 27 - July 2, 2014, pp. 347–354. IEEE (2014). https://doi.org/10.1109/BigData.Congress.2014.57

  318. Wang, X., El-Farra, N.H., Palazoglu, A.: Proactive reconfiguration of heat-exchanger supernetworks. Industrial & Engineering Chemistry Research 54(37), 9178–9190 (2015). https://doi.org/10.1021/acs.iecr.5b00598

    Article  Google Scholar 

  319. Wang, Y., Zheng, B.: Hypergraph index: an index for context-aware nearest neighbor query on social networks. Social Netw. Analys. Mining 3(4), 813–828 (2013)

    Article  Google Scholar 

  320. Wang, Z., Chen, Q., Hou, B., Suo, B., Li, Z., Pan, W., Ives, Z.G.: Parallelizing maximal clique and k-plex enumeration over graph data. J. Parallel Distrib. Comput. 106, 79–91 (2017)

    Article  Google Scholar 

  321. Wang, Z., Zhang, F., Wang, Z.: Research of return supply chain supernetwork model based on variational inequalities. In: 2007 IEEE International Conference on Automation and Logistics, pp. 25–30 (2007). https://doi.org/10.1109/ICAL.2007.4338524

  322. WANG Zhong-Tuo, W.Z.P.: Elementary study of supernetworks. Chinese Journal of Management 5(1), 1 (2008). http://202.114.18.199/Jwk_glxb//EN/abstract/article_8930.shtml

  323. Wei, K., Dinneen, M.J.: Runtime analysis comparison of two fitness functions on a memetic algorithm for the clique problem. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, July 6-11, 2014, pp. 133–140. IEEE (2014). https://doi.org/10.1109/CEC.2014.6900359

  324. Weihe, K.: Covering trains by stations or the power of data reduction. In: R. Battiti, A. Bertossi (eds.) Proceedings of “Algorithms and Experiments” (ALEX98), Trento, Italy, Feb. 9-11, pp. 1–8. Berlin, Heidelberg (1998)

    Google Scholar 

  325. Weihe, K.: Motifs in networks. In: A.S. Schulz, M. Skutella, S. Stiller, D. Wagner (eds.) Gems of Combinatorial Optimization and Graph Algorithms, pp. 59–68. Springer (2015). https://doi.org/10.1007/978-3-319-24971-1_6

    Chapter  Google Scholar 

  326. Whelan, C., Sönmez, M.K.: Computing graphlet signatures of network nodes and motifs in cytoscape with graphletcounter. Bioinformatics 28(2), 290–291 (2012). https://doi.org/10.1093/bioinformatics/btr637

    Article  Google Scholar 

  327. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, 1st edn. Cambridge University Press, New York, NY, USA (2011)

    Book  MATH  Google Scholar 

  328. Wu, H., Zhang, Z., Yue, K., Zhang, B., Liu, W.: Maximizing the cooperative influence spread in a social network oriented to viral marketing. In: APWeb Workshops, Lecture Notes in Computer Science, vol. 9865, pp. 3–15 (2016)

    Article  Google Scholar 

  329. Wu, L., He, M., Han, Y.: Hypergraph clustering-based cloud manufacturing service management method. In: J. Hou, A.J.C. Trappey, C. Wu, K. Chang, C. Liao, W. Shen, J.A. Barthès, J. Luo (eds.) Proceedings of the IEEE 18th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2014, Hsinchu, Taiwan, May 21-23, 2014, pp. 220–225. IEEE (2014). https://doi.org/10.1109/CSCWD.2014.6846845

  330. Xiao, M., Lin, W., Dai, Y., Zeng, Y.: A fast algorithm to compute maximum k-plexes in social network analysis. In: AAAI, pp. 919–925. AAAI Press (2017)

    Google Scholar 

  331. Xu, H., Zeng, G.: Modeling and verifying composite dynamic evolution of software architectures using hypergraph grammars. International Journal of Software Engineering and Knowledge Engineering 23(6), 775–800 (2013)

    Article  Google Scholar 

  332. Xue, J.: Graph coloring. In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of Optimization, Second Edition, pp. 1444–1448. Springer (2009). https://doi.org/10.1007/978-0-387-74759-0_253

  333. Xue, W., Xiaoyu, L., Niu, B.: An advanced maximum utility spectrum allocation algorithm based on graph coloring theory. Ad Hoc & Sensor Wireless Networks 36(1-4), 69–86 (2017). http://www.oldcitypublishing.com/journals/ahswn-home/ahswn-issue-contents/ahswn-volume-36-number-1-4-2017/ahswn-36-1-4-p-69-86/

    Google Scholar 

  334. Yang, T., Zhang, R., Cheng, X., Yang, L.: Graph coloring based resource sharing (GCRS) scheme for D2D communications underlaying full-duplex cellular networks. IEEE Trans. Vehicular Technology 66(8), 7506–7517 (2017). https://doi.org/10.1109/TVT.2017.2657791

    Article  Google Scholar 

  335. Yannakakis, M.: Perspectives on database theory. In: Proceedings of the IEEE Symposium on the Foundations of Computer Science, pp. 224–246 (1995)

    Google Scholar 

  336. Yaros, J.R., Imielinski, T.: Crowdsourced stock clustering through equity analyst hypergraph partitioning. In: Proceedings of the 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Economics, CIFEr 2013, IEEE Symposium Series on Computational Intelligence (SSCI), 16-19 April 2013, Singapore, pp. 110–117. IEEE (2013). https://doi.org/10.1109/CIFEr.2013.6611705

  337. Yin, G., Wei, J., Dong, H.: A cellular automaton based network diffusion model: Preparation for more scalable viral marketing. In: CTS, pp. 308–315. IEEE (2012)

    Google Scholar 

  338. Yoshida, T., Yamada, Y.: A community structure-based approach for network immunization. Computational Intelligence 33(1), 77–98 (2017). https://doi.org/10.1111/coin.12082

    Article  MathSciNet  Google Scholar 

  339. Yu, X., Yin, X., Han, W., Gao, J., Gu, X.: Scalable routing in 3d high genus sensor networks using graph embedding. In: A.G. Greenberg, K. Sohraby (eds.) Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30, 2012, pp. 2681–2685. IEEE (2012). https://doi.org/10.1109/INFCOM.2012.6195678

  340. Zais, M., Laguna, M.: A graph coloring approach to the deployment scheduling and unit assignment problem. J. Scheduling 19(1), 73–90 (2016). https://doi.org/10.1007/s10951-015-0434-0

    Article  MathSciNet  MATH  Google Scholar 

  341. Zhan, H., Madduri, K.: Analyzing community structure in networks. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2017, Orlando / Buena Vista, FL, USA, May 29 - June 2, 2017, pp. 1540–1549. IEEE Computer Society (2017). https://doi.org/10.1109/IPDPSW.2017.154

  342. Zhang, H., Wu, W., Zhao, L.: A study of knowledge supernetworks and network robustness in different business incubators. Physica A: Statistical Mechanics and its Applications 447, 545–560 (2016). https://doi.org/10.1016/j.physa.2015.12.051

    Article  Google Scholar 

  343. Zhang, Y., Wang, J., Zeng, Z., Zhou, L.: Parallel mining of closed quasi-cliques. In: IPDPS, pp. 1–10. IEEE (2008)

    Google Scholar 

  344. Zhao, P., Li, Y., Xie, H., Wu, Z., Xu, Y., Ma, R.T.B., Lui, J.C.S.: Impact of online activities on influence maximization: A random walk approach. CoRR abs/1602.03966 (2016)

    Google Scholar 

  345. Zhu, W.Y., Peng, W.C., Chen, L.J., Zheng, K., Zhou, X.: Exploiting viral marketing for location promotion in location-based social networks. ACM Trans. Knowl. Discov. Data 11(2), 25:1–25:28 (2016). https://doi.org/10.1145/3001938

    Article  Google Scholar 

  346. Zou, Z., Zhu, R.: Truss decomposition of uncertain graphs. Knowledge and Information Systems 50(1), 197–230 (2017). https://doi.org/10.1007/s10115-016-0943-y

    Article  Google Scholar 

  347. Mohammad Nazmul Haque, Luke Mathieson, and Pablo Moscato. A memetic algorithm for community detection by maximising the connected cohesion. In 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, November 27 - Dec. 1, 2017, pages 2475–2482, 2017.

    Google Scholar 

Download references

Acknowledgements

P.M. acknowledges previous funding of his research by the Australian Research Council grants Future Fellowship FT120100060 and Discovery Project DP140104183. He also acknowledges previous support by FAPESP, Brazil (1996–2001). P.M. also thanks N.J. de Vries, M.N. Haque, and A.C. Gabardo for discussions and help in preparation of the figures, and Sergio Gómez for useful comments on earlier versions of this chapter and in particular in the area of multilayer networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Moscato .

Editor information

Editors and Affiliations

Appendix: Software

Appendix: Software

We list here a set of some free software solutions for the analysis and processing of graphs that we have used in the past and may be worth checking when looking for top-of-the-shelf analysis methods.

  • Commetrix Footnote 13: A software framework for dynamic network visualization and analysis. It supports community extraction, real-time analysis, and visualization of dynamic networks, a better understanding of social network data and clustering of network graphs. An evaluation version of the software (valid for 30 days) is available for download on their webpage. However, the software can also be obtained free of charge after consideration of the user status and affiliation.

  • Cuttlefish Footnote 14: A software framework for visualizing networks. It also supports manipulation of network layouts using different popular algorithms (such as ARF, weighted-ARF, k-core, Kamada-Kawai, Fruchterman-Reingold, iso-m, circle, tree, and radial-tree). This Java-based applet tool can be incorporated into websites.

  • Cytoscape Footnote 15: A software initially designed for Bioinformatics applications, it becomes a popular general platform for graph/network analysis and visualization [285]. It provides an integrated environment for network analysis and visualization. In a nutshell, Cytoscape facilitates graph isomorphism, calculation of MST, network alignment, Social network connectivity analysis, graph triplet counter, topological algorithms, and many other functionalities through apps. An extensive range of apps available to use in Cytoscape, such as for visualization, network generation, graph analysis, clustering, layouts, and network comparisons. Since it was originally written in Java, it can run on all operating systems (Windows, Linux, Mac OS).

  • EgoNet Footnote 16: An open-source and free program for collection and analysis of egocentric social networks. It can help in creating questionnaires, data collection and generating network measures which can be exported to be used by other advanced network analysis tools. Java-based cross-platform executables are available for Linux, Mac OS, and Windows.

  • Gephi Footnote 17: This is a popular suite of tools that allow the exploration and visualization of graphs [18]. It can produce a real-time visualization of networks consisting of up to 100 thousands of nodes and million edges. The layout algorithms provide both the force-and-optimization-based state-of-the-art layout algorithms. In addition to these, it supports the calculation of statistics and metrics from networks. The program runs on all operating systems (Windows, Linux, Mac OS). Many uses, and extensible through plug-ins.

  • GraphChi Footnote 18: A disk-based large graph analysis software which is capable of analysing web-scale of complex networks, including those with billions of edges in a consumer standard laptop computer. It has graph contraction-based implementation for iterative graph algorithms for MST and minimum spanning forest (MSF), PageRank algorithm and also supports streaming graph updates for big graphs. Written in C++ (source code available), it has been tested on Mac OS X and Linux.

  • GraphStream Footnote 19: An open-source Java library for modelling and analysis for dynamic graphs. It provides various options for manipulation and analysis of large graphs. Connected Component, eccentricity, strongly connected components, PageRank are some of the featured graph analysis algorithms available in GraphStream library.

  • Graphviz Footnote 20: An open-source graph visualization software which uses textual description file system, in DOT language. It facilitates flexible options for graph drawing and visualizations. Some examples of features are drawing various types of graphs, visualization using radial, circular, tree and array-based layouts. Apart from visualization algorithms, it also supports graph analysis methods, such as directed acyclic graph, finding biconnected components, connected components, single-source distance filtering, counting graph components finding and augmenting clusters in a graph. The software supports scripting access through API using guile, Java, Perl, PHP, Python, Ruby, and Tcl languages. The source code of the program is available at https://gitlab.com/graphviz/graphviz/.

  • graph-tool Footnote 21: Efficient Python module for manipulation and statistical analysis of graphs [253]. Several graph algorithms such as isomorphism, subgraph, MST, connected components, and maximum flow are supported in graph-tool. It also provides the calculation of standard statistical graph measures and community structure detection algorithms.

  • GUESS Footnote 22: An open-source exploratory data analysis and visualization tool for graphs and networks [3]. It supports many popular layout algorithms such as Fruchtermen-Reingold, Kamada-Kawai, Sugiyama, Random, Radial, and Rescaling and rotating. Written in Java, it can run in all operating systems (Windows, Linux, Mac OS).

  • igraph Footnote 23: Collection of network analysis tools with the importance on efficiency, portability, and ease of use [57]. It is one of the biggest graph libraries written in C, which allows programming in R, Python, and C/C++. It has an extensive range of features, such as graph generation, conversion, manipulation, layout algorithms, calculation of structural statistic and measures, community detection, calculation of cohesive block and coreness, Graph Clustering, and motifs identification.

  • JUNG Footnote 24: Java Universal Network/Graph Framework (JUNG) is an extensible software library for modelling, analysing, and visualizing of graph data. It can generate random graphs, clustering algorithms, calculation of structural measures (such as centrality, PageRank, and HITS), and decomposition of graphs. Its visualization framework consists of Fruchterman-Reingold, Kamada-Kawai, Radial, Tree, Circle and Spring Layout.

  • MapEquation Footnote 25: Tools to simplify and highlight important structures in complex networks [79]. Centred on community detection using the Infomap algorithm. It has single and multi-level hierarchical layout algorithms for visualization. Written in C++, it can run on all operating systems (Windows, Linux, Mac OS).

  • MeerKat Footnote 26: A tool to visualize and analysis of social network. It includes several network analysis capabilities such as community detection, layout, and dynamic analysis of networks. Meerkat facilitates several state-of-the-art layout algorithms: such as Fruchterman-Reingold, Circle, Self-Organizing, and Kamada-Kawai. It also provides traditional graph metrics, or statistical information and well-known network measures like PageRank, HITS, Betweenness, and Centrality. The installer is available for Windows, Ubuntu, and Mac OS X.

  • MuxViz Footnote 27: Framework for the multilayer analysis and visualization of networks [61]. Although it is designed for multilayer networks, single layer networks can also be used as a valid input. It supports Fruchterman-Reingold, Kamada-Kawai visualization for single layer graph and supports topological descriptors calculation for both types of networks. Based on R and Octave, it can run on all operating systems (Windows, Linux, Mac OS).

  • NetMiner Footnote 28: A proprietary software for network visualization and analysis. It has an inbuilt Python-based automatic script generation that facilitates the work for some users. It supports built-in 3D network visualization and graph mining based on Machine Learning for reduction, classification, clustering, and recommendation. An academic time-limited licence is available to students, researchers, and teachers. The software only works on Windows operating system.

  • NetworKit Footnote 29: An open-source toolkit for large-scale network analysis. It contains the scalable implementation of graph algorithms to utilize multicore architecture. This Python-based toolkit used OpenMP with C++ for shared-memory parallelism. It has several node centrality measures such as degree, k-core decomposition, PageRank, and Betweenness. The partition algorithms are employed for community detection, connected component identification, and k-core decomposition. It also has several graph modelling and generation approaches. The software requires Linux based environment (such as Mac OS X and Ubuntu). However, the native Linux Subsystem supported by Microsoft is sufficient for using it in Windows 10.

  • NetworkX Footnote 30: a Python software package which facilitates the creation, manipulation, and study of the structure, dynamics, and functions of complex networks [282]. It provides tools for social, biological, and other network analysis. It has a wide range of algorithms for approximation and heuristics (k-component, clique, clustering, dominating set, independent set, Steiner tree, vertex cover, etc.). NetworkX facilitates the computation of bi-partiteness (matching, projection, and centrality are few of them) and components (strong, weak, biconnected, semi-connectedness, etc.). Among other features we can mention connectivity with k-edge, k-node, disjoint path, min cut, etc.; cores decomposition using k-core, k-crust, k-corona, etc.; network flows and link analysis (PageRank, Hits) are some highlights.

  • Network Workbench Footnote 31: A toolkit for large-scale network visualization, analysis, and modelling specially designed for biomedical, social science, and physics research. In terms of network analysis, it supports Random, Watts-Strogatz Small world, random and scale-free methods for graph modelling; tree, balloon, radial, circular, Kamada-Kawai, Fruchterman-Reingold, Force-Directed, etc. layout algorithms; community detection, clustering, PageRank and other standard network analysis approaches. The installer is available for Windows, Linux, and Mac OS X.

  • NodeXL Footnote 32: An open-source template for Microsoft Excel capable of network visualization and analysis. Apart from general network visualization, it is capable of supporting text, sentiment, and social media stream data analysis. It is also capable of calculating network metrics like degree, centrality, PageRank, and clustering coefficients. Dynamic filtering, vertex grouping, Zooming, and scaling are some mentionable features available in the graph layout approaches.

  • Pajek Footnote 33: Analysis and visualization tool for Windows (can be run under Linux and Mac OS X using Wine) [19]. Includes the generation of random networks, the calculation of structural network descriptors, the operation of networks, community detection, etc. It also includes features for subnetwork extraction, searching for connected components, k-neighbours, max flow, community detection, generation different types of random networks. Several popular layout algorithms like Fruchterman-Reingold, Kamada-Kawai, FishEye transformation, etc. are available.

  • Radatools Footnote 34: Set of programs for the analysis of complex networks, with main attention to community detection and the finding of structural properties [108]. Written in Ada (source code available as RadalibFootnote 35), it includes native executables for Windows, Linux, and MacOS. It includes the modularity and mesoscales approaches for community detection; weighted network conversion; computation of connected components, degrees, strengths, clustering coefficients, and so on. To support network manipulation functionalities, it provides subgraph extraction, network data type conversion, sorting of nodes based on degree, spanning tree computation, etc.

  • SNAP Footnote 36: General purpose, high performance system for analysis and manipulation of large networks [171]. Written in C++, yet can be accessed from C++ and Python. It can scale the algorithms to handle network consisting of hundreds of millions of nodes and billions of edge. It has a wide range of features for supporting different types of graphs, graph modelling features, graph manipulation, drawing, community detection, and analysis. Some of the notable features of them are subgraph conversion, connected component, clustering coefficient calculation, BFS and DFS and k-core decomposition.

  • SocNetV Footnote 37: Social Network Visualizer (SocNetV) is a cross-platform, free software for network analysis and visualization. It has rich feature set ranging from network visualization, layout modelling, network measures calculation, fast algorithms for community detection (clique and triad census) and built-in web crawler for creating the social network. It has embedded many popular social network datasets into the package, such as Zachary, Freeman, Mexican Power Network, and Petersen, and also supports several random network generation approaches. It features the calculation of cohesion metrices (Geodesics Matrix, Eccentricity, Symmetry Test, etc.), connectedness (strongly, weakly connected, and disconnected) and visualization layouts (circular, Spring Embedder, Fruchterman-Reingold, etc.). The source code (http://socnetv.org/downloads) and the installer are available for Windows, Linux, and Mac OS X.

  • Visone Footnote 38: Tool for the analysis and visualization of social networks [35]. It has features for calculation of node and link-level indices from the graph, such as centrality (Degree, Betweenness, Closeness, Current-flow centralities, Eccentricity, Eigenvector centrality, PageRank, etc.) and clustering coefficient for local density calculation. Written in Java, it can run on all operating systems (Windows, Linux, Mac OS).

Many other options for specific purposes exist, e.g., community detection algorithms, analysis of specific dynamics, benchmarking, etc. The previous list tries to cover only general purpose programs, but a simple online search is enough to discover other interesting tools. There are also complex network packages for proprietary platforms, such as Matlab, that we have not considered in the previous list. The integration of some tools with Python (igraph, NetworkX, graph-tool) and R (igraph, MuxViz) is very useful to expand their possibilities to analyse complex networks using high level programming.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moscato, P. (2019). Business Network Analytics: From Graphs to Supernetworks. In: Moscato, P., de Vries, N. (eds) Business and Consumer Analytics: New Ideas. Springer, Cham. https://doi.org/10.1007/978-3-030-06222-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06222-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06221-7

  • Online ISBN: 978-3-030-06222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics