Skip to main content

An Introduction to Proximity Graphs

  • Chapter
  • First Online:
Business and Consumer Analytics: New Ideas

Abstract

Proximity graphs are one of the combinatorial data-miner’s frontline tools. They allow expression of complex proximity relationships and are the basis of many other algorithms. Here we introduce the concept of proximity graphs, present basic definitions and discuss some of the most common types of proximity graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reinvented three further times under different names [9, 17], most notably as Sollin’s algorithm [39].

  2. 2.

    Also invented repeatedly [14, 24, 35], first by Vojtĕch Jarník [24]. The name Prim’s algorithm is however almost universally used.

  3. 3.

    Note also that the Voronoi Diagram of a set of points in general position is the dual graph of the Delaunay Triangulation.

  4. 4.

    It is interesting to note that not only was it discovered concurrently, but both articles were published in the same issue of the Computer Journal.

  5. 5.

    In a case of a set of points, of the implicit complete graph.

  6. 6.

    Some general algorithms are Dijkstra’s Algorithm [14], the Bellman–Ford–Moore Algorithm [3, 19, 33], the Floyd–Roy–Warshall Algorithm [18, 37, 46] and Johnson’s Algorithm [26].

  7. 7.

    Given a set of points P, a point q is a nearest point of point p if d(p, q) =minrP{d(p, r)}.

  8. 8.

    That is, no hyperplane contains more than d points where d is the dimension of the space. In particular, in two dimensions this means that no three points are colinear.

  9. 9.

    c being the length of the “unit” in the graph’s title.

  10. 10.

    Not to be confused with the amenity based star rating system!

  11. 11.

    Note that the figures are 2-dimensional projections of the 5-dimensional proximity graphs.

  12. 12.

    Note that the choice of projective plane here is largely for convenience. The choice of two of the ratings categories to form the x and y dimensions in the image has no additional bearing on the graph itself, only its layout. Certainly other axes could be used; other selections of the ratings categories are of course possible, but we note that given the nature of ratings, they are all essentially pairwise correlated and have sharp distributions, leading to roughly the same point layout. We could also choose a projection unrelated to the underlying data, for example, we could generate the graph, then apply any of a suite of layout algorithms, divorcing the position of the vertices from any intrinsic meaning.

References

  1. Fermat-Torricelli problem. In Michiel Hazewinkel, editor, Encyclopedia of Mathematics. Springer, 2001.

    Google Scholar 

  2. Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean minimum spanning trees and bichromatic closest pairs. Discrete & Computational Geometry, 6(3):407–422, 1991.

    Article  MathSciNet  Google Scholar 

  3. Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.

    Article  MathSciNet  Google Scholar 

  4. Jon L. Bentley, Donald F. Stanat, and E.Hollins Williams. The complexity of finding fixed-radius near neighbours. Information Processing Letters, 6(6):209–212, 1977.

    Google Scholar 

  5. Otakar Borůvka. O jistém problému minimálním. Práce Moravské pr̆írodovĕdecké. Spolec̆nosti, 3(3):37–58, 1926.

    Google Scholar 

  6. A. Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24(2):162–166, 1981.

    Article  MathSciNet  Google Scholar 

  7. Jean Cardinal, Sébastian Collette, and Stefan Langerman. Empty region graphs. Computational Geometry Theory & Applications, 42(3):183–195, 2009.

    Article  MathSciNet  Google Scholar 

  8. Bernard Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM, 47(6):1028–1047, 2000.

    Article  MathSciNet  Google Scholar 

  9. Gustave Choquet. Étude de certains réseaux de routes. Comptes-rendus de l’Académie des Sciences, 206:310–313, 1938.

    MATH  Google Scholar 

  10. P. Cignoni, C. Montani, and R. Scopigno. DeWall: A fast divide and conquer Delaunay triangulation algorithm in e d. Computer-Aided Design, 30(5):333–341, 1998.

    Article  Google Scholar 

  11. Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1):165–177, 1990.

    Article  MathSciNet  Google Scholar 

  12. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications, chapter Delaunay Triangulations: Height Interpolation. Spring-Verlag, 2008.

    Google Scholar 

  13. Jesús De Loera, Jörg Rambau, and Francisco Santos. Triangulations, structures for algorithms and applications. In Algorithms and Computation in Mathematics, volume 25. Springer, 2010.

    Google Scholar 

  14. Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, pages 269–271, 1959.

    Google Scholar 

  15. H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. Algorithmica, 15(3):223–241, 1996.

    Article  MathSciNet  Google Scholar 

  16. Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29(4):551–559, 1983.

    Article  MathSciNet  Google Scholar 

  17. Kazimierz Florek. Sur la liaison et la division des points d’un ensemble fini. Colloquium Mathematicum 2, pages 282–285, 1951.

    Article  MathSciNet  Google Scholar 

  18. Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

    Article  Google Scholar 

  19. L. R. Ford. Network flow theory. Technical Report P923, RAND Corporation, Santa Monica, USA, 1956.

    Google Scholar 

  20. Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

    Article  MathSciNet  Google Scholar 

  21. K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis. Systematic Zoology, 18:259–278, 1969.

    Article  Google Scholar 

  22. Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi. ACM Transactions on Graphics, 4(2):74–123, 1985.

    Article  Google Scholar 

  23. Ferran Hurtado, Giuseppe Liotta, and Hank Meijer. Optimal and suboptimal robust algorithms for proximity graphs. Computational Geometry Theory & Applications, 25(1–2):35–49, 2003.

    Article  MathSciNet  Google Scholar 

  24. Vojtĕch Jarník. O jistém problému minimálním. Práce Moravské pr̆írodovĕdecké. Spolec̆nosti, 6(4):57–63, 1930.

    Google Scholar 

  25. Jerzy W. Jaromczyk and Mirosław Kowaluk. Constructing the relative neighborhood graph in 3-dimensional Euclidean space. Discrete Applied Mathematics, 31(2):181–191, 1991.

    Article  MathSciNet  Google Scholar 

  26. Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 24(1):1–13, 1977.

    Article  MathSciNet  Google Scholar 

  27. David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM, 42(2):321–328, 1995.

    Article  MathSciNet  Google Scholar 

  28. David G. Kirkpatrick and John D. Radke. A framework for computational morphology. In Computational Geometry, Machine Intelligence and Pattern Recognition, volume 2, pages 217–248. North-Holland, Amsterdam, 1985.

    Google Scholar 

  29. Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

    Article  MathSciNet  Google Scholar 

  30. Geoff Leach. Improving worst-case optimal Delaunay triangulation algorithms. In Proceedings of the 4th Canadian Conference on Computational Geometry, page 15, 1992.

    Google Scholar 

  31. D. T. Lee and B. Schachter. Two algorithms for constructing Delaunay triangulations. International Journal of Computer and Information Sciences, 9(3):219–242, 1980.

    Article  MathSciNet  Google Scholar 

  32. A. Lingas. A linear-time construction of the relative neighborhood graph from the Delaunay triangulation. Computational Geometry, 4(4):199–208, 1994.

    Article  MathSciNet  Google Scholar 

  33. Edward F. Moore. The shortest path through a maze. In Proceedings of the International Symposium on Switching Theory 1957, Part II, pages 285–292. Harvard Univ. Press, Cambridge, Mass., 1959.

    Google Scholar 

  34. Joseph O’Rourke. Computing the relative neighborhood graph in the L 1 and L metrics. Pattern Recognition, 15(3):189–192, 1982.

    Article  MathSciNet  Google Scholar 

  35. Robert C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36(6):1389–1401, 1957.

    Article  Google Scholar 

  36. S. Rebay. Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm. Journal of Computational Physics, 106(1):127, 1993.

    Article  Google Scholar 

  37. Bernard Roy. Transitivité et connexité. Comptes rendus de l’Académie des sciences, (249):216–218.

    Google Scholar 

  38. M. Shamos and D. Hoey. Closest-point problems. In Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science, pages 151–162, 1975.

    Google Scholar 

  39. M. Sollin. Le tracé de canalisation. Programming, Games, and Transportation Networks, 1965.

    Google Scholar 

  40. Peter Su and Robert L. Scot Drysdale. A comparison of sequential Delaunay triangulation algorithms. In Proceedings of the Eleventh Annual Symposium on Computational Geometry, pages 61–70, New York, NY, USA, 1995. ACM.

    Google Scholar 

  41. K. J. Supowit. The relative neighborhood graph, with an application to minimum spanning trees. Journal of the ACM, 30(3):428–448, 1983.

    Article  MathSciNet  Google Scholar 

  42. G. T. Toussaint. Comment: Algorithms for computing relative neighbourhood graph. Electronics Letters, 16(22):860, 1980.

    Article  MathSciNet  Google Scholar 

  43. G. T. Toussaint. The relative neighborhood graph of a finite planar set. Pattern Recognition, 12(4):261–268, 1980.

    Article  MathSciNet  Google Scholar 

  44. R. B. Urquhart. Algorithms for computation of relative neighbourhood graph. Electronics Letters, 16(14):556, 1980.

    Article  MathSciNet  Google Scholar 

  45. Remko C. Veltkamp. The γ-neighborhood graph. Computational Geometry Theory & Applications, 1(4):227–246, 1992.

    Article  MathSciNet  Google Scholar 

  46. Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

    Article  MathSciNet  Google Scholar 

  47. D. F. Watson. Computing the n-dimensional Delaunay tessellation with application to voronoi polytopes. The Computer Journal, 24(2):167–172, 1981.

    Article  MathSciNet  Google Scholar 

  48. A. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing, 11:721–736, 1982.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Pablo Moscato acknowledges previous support from the Australian Research Council Future Fellowship FT120100060 and Australian Research Council Discovery Projects DP120102576 and DP140104183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Mathieson .

Editor information

Editors and Affiliations

Appendix: Example Point Set

Appendix: Example Point Set

Point

x-position

y-position

Point

x-position

y-position

1

0.723212968

0.178106849

26

0.907661273

0.729217676

2

0.920432236

0.485452615

27

0.545987988

0.340721248

3

0.551488565

0.873938297

28

0.181010885

0.597560442

4

0.306689395

0.414440461

29

0.254672002

0.906480972

5

0.252440631

0.386800466

30

0.105705

0.170610555

6

0.326211397

0.990150763

31

0.667526022

0.476145574

7

0.669619173

0.276130067

32

0.784634882

0.565077639

8

0.385344312

0.279983967

33

0.287186647

0.402820584

9

0.695385871

0.066082659

34

0.182059349

0.688221614

10

0.475169562

0.266587733

35

0.637400634

0.602165836

11

0.545891144

0.912037976

36

0.322844825

0.588968292

12

0.017635186

0.333899253

37

0.760253692

0.383415267

13

0.621307759

0.610259379

38

0.25928387

0.955812554

14

0.716927846

0.528621053

39

0.791903241

0.644445644

15

0.207482761

0.976842469

40

0.005358534

0.280421027

16

0.018216165

0.891276263

41

0.419955306

0.763752059

17

0.320578694

0.264128312

42

0.2918794

0.122258146

18

0.420885588

0.702595526

43

0.010059218

0.809975938

19

0.237547534

0.454149704

44

0.008974315

0.354484587

20

0.608278025

0.297481298

45

0.450824119

0.497067255

21

0.830447143

0.512086882

46

0.01188008

0.444212976

22

0.105544439

0.033963298

47

0.892440161

0.2077337

23

0.741506729

0.279505876

48

0.245942889

0.718327626

24

0.99144205

0.866106852

49

0.636074704

0.058158036

25

0.021779104

0.004131444

50

0.133528981

0.009221669

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathieson, L., Moscato, P. (2019). An Introduction to Proximity Graphs. In: Moscato, P., de Vries, N. (eds) Business and Consumer Analytics: New Ideas. Springer, Cham. https://doi.org/10.1007/978-3-030-06222-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06222-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06221-7

  • Online ISBN: 978-3-030-06222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics