K. Ahmadian, A. Golestani, M. Analoui, and M.R. Jahed. Evolving ensemble of classifiers in low-dimensional spaces using multi-objective evolutionary approach. In Computer and Information Science, 2007. ICIS 2007. 6th IEEE/ACIS International Conference on, pages 217–222, July 2007.
Google Scholar
Matti Aksela and Jorma Laaksonen. Using diversity of errors for selecting members of a committee classifier. Pattern Recognition, 39(4):608–623, April 2006.
CrossRef
Google Scholar
Massimiliano Caramia and Paolo Dell’Olmo. Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms, chapter Multi-objective Optimization, pages 11–36. Springer London, London, 2008.
Google Scholar
Arjun Chandra and Xin Yao. Ensemble learning using multi-objective evolutionary algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445, 2006.
MathSciNet
CrossRef
Google Scholar
Chien-Yuan Chiu and B. Verma. Multi-objective evolutionary algorithm based optimization of neural network ensemble classifier. In Signal Processing and Communication Systems (ICSPCS), 2014 8th International Conference on, pages 1–5, Dec 2014.
Google Scholar
Natalie Jane de Vries, Jamie Carlson, and Pablo Moscato. A data-driven approach to reverse engineering customer engagement models: Towards functional constructs. PLoS ONE, 9(7):e102768, 2014.
CrossRef
Google Scholar
Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2):182–197, 2002.
CrossRef
Google Scholar
E.M. Dos Santos, R. Sabourin, and P. Maupin. Single and Multi-Objective Genetic Algorithms for the Selection of Ensemble of Classifiers. The 2006 IEEE International Joint Conference on Neural Network Proceedings, pages 3070–3077, 2006.
Google Scholar
Eulanda M. Dos Santos, Robert Sabourin, and Patrick Maupin. Pareto analysis for the selection of classifier ensembles. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pages 681–688, New York, NY, USA, 2008. ACM.
Google Scholar
R. Dutt and A.K. Madan. Predicting biological activity: Computational approach using novel distance based molecular descriptors. Computers in Biology and Medicine, 42(10):1026–1041, 2012.
CrossRef
Google Scholar
Shenkai Gu, Ran Cheng, and Yaochu Jin. Multi-objective ensemble generation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(5):234–245, 2015.
Google Scholar
David Hadka. MOEA Framework: A Free and Open Source Java Framework for Multiobjective Optimization, 2014.
Google Scholar
Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten. The WEKA Data Mining Software: An Update. SIGKDD Explorations Newsletter, 11(1):10–18, 2009.
CrossRef
Google Scholar
M. N. Haque, M. N. Noman, R. Berretta, and P. Moscato. Optimising weights for heterogeneous ensemble of classifiers with differential evolution. In 2016 IEEE Congress on Evolutionary Computation (CEC), pages 233–240, July 2016.
Google Scholar
Mohammad Nazmul Haque, Nasimul Noman, Regina Berretta, and Pablo Moscato. Heterogeneous ensemble combination search using genetic algorithm for class imbalanced data classification. PLoS ONE, 11(1):e0146116, 01, 2016.
CrossRef
Google Scholar
Yaochu Jin and B. Sendhoff. Pareto-based multiobjective machine learning: An overview and case studies. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 38(3):397–415, May 2008.
CrossRef
Google Scholar
Giuseppe Jurman, Samantha Riccadonna, and Cesare Furlanello. A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE, 7(8):e41882, 08, 2012.
CrossRef
Google Scholar
Gulshan Kumar and Krishan Kumar. The Use of Multi-Objective Genetic Algorithm Based Approach to Create Ensemble of ANN for Intrusion Detection. International Journal of Intelligence Science, 2(October):115–127, 2012.
CrossRef
Google Scholar
Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181–207, 2003.
CrossRef
Google Scholar
Charles X Ling, Jin Huang, and Harry Zhang. AUC: a statistically consistent and more discriminating measure than accuracy. In IJCAI, volume 3, pages 519–524, 2003.
Google Scholar
Seema Mane, Shilpa Sonawani, and Sachin Sakhare. Hybrid multi-objective optimization approach for neural network classification using local search. In Innovations in Computer Science and Engineering, pages 171–179. Springer, 2016.
Google Scholar
Anabel Martínez-Vargas, Josué Domínguez-Guerrero, Ángel G Andrade, Roberto Sepúlveda, and Oscar Montiel-Ross. Application of NSGA-II algorithm to the spectrum assignment problem in spectrum sharing networks. Applied Soft Computing, 39:188–198, 2016.
CrossRef
Google Scholar
Tien Thanh Nguyen, A.W.-C. Liew, Xuan Cuong Pham, and Mai Phuong Nguyen. Optimization of ensemble classifier system based on multiple objectives genetic algorithm. In Machine Learning and Cybernetics (ICMLC), 2014 International Conference on, volume 1, pages 46–51, July 2014.
Google Scholar
Ruba Obiedat, Mouhammd Alkasassbeh, Hossam Faris, and Osama Harfoushi. Customer churn prediction using a hybrid genetic programming approach. Scientific Research and Essays, 8(27):1289–1295, 2013.
Google Scholar
A. Rahman and B. Verma. Cluster oriented ensemble classifiers using multi-objective evolutionary algorithm. In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1–6, Aug 2013.
Google Scholar
A. Santana, R.G.F. Soares, A.M.P. Canuto, and Marcilio C P de Souto. A dynamic classifier selection method to build ensembles using accuracy and diversity. In Neural Networks, 2006. SBRN ’06. Ninth Brazilian Symposium on, pages 36–41, Oct 2006.
Google Scholar
L Shi, G Campbell, WD Jones, F Campagne, S Walker, Z Su, et al. The MAQC-II project: A comprehensive study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology, 2010.
Google Scholar
Nidamarthi Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3):221–248, 1994.
CrossRef
Google Scholar
Stephen V Stehman. Selecting and interpreting measures of thematic classification accuracy. Remote sensing of Environment, 62(1):77–89, 1997.
CrossRef
Google Scholar
Fatemeh Vafaee. Using multi-objective optimization to identify dynamical network biomarkers as early-warning signals of complex diseases. Scientific Reports, 6:22023, 2016.
CrossRef
Google Scholar
Zhi-Hua Zhou and Nan Li. Multi-information ensemble diversity. In Multiple Classifier Systems: 9th International Workshop, MCS 2010, Cairo, Egypt, April 7–9, 2010. Proceedings, pages 134–144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
Google Scholar
S Zickenrott, VE Angarica, BB Upadhyaya, and A Del Sol. Prediction of disease–gene–drug relationships following a differential network analysis. Cell Death & Disease, 7(1):e2040, 2016.
CrossRef
Google Scholar