Skip to main content

Memetic Algorithms for Business Analytics and Data Science: A Brief Survey

  • Chapter
  • First Online:
Business and Consumer Analytics: New Ideas

Abstract

This chapter reviews applications of Memetic Algorithms in the areas of business analytics and data science. This approach originates from the need to address optimization problems that involve combinatorial search processes. Some of these problems were from the area of operations research, management science, artificial intelligence and machine learning. The methodology has developed considerably since its beginnings and now is being applied to a large number of problem domains. This work gives a historical timeline of events to explain the current developments and, as a survey, gives emphasis to the large number of applications in business and consumer analytics that were published between January 2014 and May 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2013) Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20–23, 2013, IEEE, URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6552460

  2. (2016) IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, July 24–29, 2016, IEEE, URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7636124

  3. (2017) 2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia, San Sebastián, Spain, June 5–8, 2017, IEEE, URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7959755

  4. Abbasi-Pooya A, Kashan AH (2017) New mathematical models and a hybrid grouping evolution strategy algorithm for optimal helicopter routing and crew pickup and delivery. Computers & Industrial Engineering 112:35–56, URLs https://doi.org/10.1016/j.cie.2017.08.007, https://www.sciencedirect.com/science/article/pii/S0360835217303492

    Article  Google Scholar 

  5. Abdullah S, Turabieh H (2012) On the use of multi neighbourhood structures within a tabu-based memetic approach to university timetabling problems. Inf Sci 191:146–168

    Article  Google Scholar 

  6. Abdullah S, Turabieh H, McCollum B, McMullan P (2010) A tabu-based memetic approach for examination timetabling problems. In: RSKT, Springer, Lecture Notes in Computer Science, vol 6401, pp 574–581

    Article  Google Scholar 

  7. Acampora G, Gaeta M, Ballester EM, Vitiello A (2011) An adaptive multi-agent memetic system for personalizing e-learning experiences. In: FUZZ-IEEE, IEEE, pp 123–130

    Google Scholar 

  8. Acampora G, Gaeta M, Loia V (2011) Combining multi-agent paradigm and memetic computing for personalized and adaptive learning experiences. Computational Intelligence 27(2):141–165

    Article  MathSciNet  Google Scholar 

  9. Agharghor A, Riffi ME, Chebihi F (2016) A memetic hunting search algorithm for the traveling salesman problem. In: Mohajir ME, Chahhou M, Achhab MA, Mohajir BEE (eds) 4th IEEE International Colloquium on Information Science and Technology, CIST 2016, Tangier, Morocco, October 24–26, 2016, IEEE, pp 206–209, URL https://doi.org/10.1109/CIST.2016.7805043

  10. Ahammed F, Moscato P (2011) Evolving l-systems as an intelligent design approach to find classes of difficult-to-solve traveling salesman problem instances. In: EvoApplications (1), Springer, Lecture Notes in Computer Science, vol 6624, pp 1–11

    Article  Google Scholar 

  11. Akandwanaho SM, Viriri S (2017) A spy search mechanism (SSM) for memetic algorithm (MA) in dynamic environments. In: Phon-Amnuaisuk S, Ang SP, Lee SY (eds) Multi-disciplinary Trends in Artificial Intelligence, Springer International Publishing, Cham, pp 450–461

    Chapter  Google Scholar 

  12. Al-Betar MA, Khader AT, Doush IA (2014) Memetic techniques for examination timetabling. Annals OR 218(1):23–50, URL https://doi.org/10.1007/s10479-013-1500-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Al-Jadir I, Wong KW, Fung CC, Xie H (2017) Differential evolution memetic document clustering using chaotic logistic local search. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ESM (eds) Neural Information Processing, Springer International Publishing, Cham, pp 213–221

    Chapter  Google Scholar 

  14. Al-Jadir I, Wong KW, Fung CC, Xie H (2017) Text dimensionality reduction for document clustering using hybrid memetic feature selection. In: Phon-Amnuaisuk S, Ang SP, Lee SY (eds) Multi-disciplinary Trends in Artificial Intelligence, Springer International Publishing, Cham, pp 281–289

    Chapter  Google Scholar 

  15. Al-Jadir I, Wong KW, Fung CC, Xie H (2017) Text document clustering using memetic feature selection. In: Proceedings of the 9th International Conference on Machine Learning and Computing, ACM, New York, NY, USA, ICMLC 2017, pp 415–420, URL http://doi.acm.org/10.1145/3055635.3056603

  16. Alba E, Almeida F, Blesa MJ, Cabeza J, Cotta C, Díaz M, Dorta I, Gabarró J, León C, Luna J, Moreno LM, Pablos C, Petit J, Rojas A, Xhafa F (2002) MALLBA: A library of skeletons for combinatorial optimisation (research note). In: Monien B, Feldmann R (eds) Euro-Par 2002, Parallel Processing, 8th International Euro-Par Conference Paderborn, Germany, August 27–30, 2002, Proceedings, Springer, Lecture Notes in Computer Science, vol 2400, pp 927–932, URL https://doi.org/10.1007/3-540-45706-2_132

    Chapter  Google Scholar 

  17. Alsheddy A (2017) Solving the free clustered TSP using a memetic algorithm. International Journal of Advanced Computer Science and Applications 8(8), URL http://dx.doi.org/10.14569/IJACSA.2017.080852

  18. Amaya JE, Porras CC, Leiva AJF (2015) Memetic and hybrid evolutionary algorithms. In: Kacprzyk J, Pedrycz W (eds) Springer Handbook of Computational Intelligence, Springer, pp 1047–1060, URL https://doi.org/10.1007/978-3-662-43505-2_52

    Chapter  Google Scholar 

  19. Amirghasemi M, Zamani R (2017) An effective evolutionary hybrid for solving the permutation flowshop scheduling problem. Evolutionary Computation 25(1):87–111, URL https://doi.org/10.1162/EVCO_a_00162

    Article  Google Scholar 

  20. Andre R, Schlag S, Schulz C (2017) Memetic Multilevel Hypergraph Partitioning. ArXiv e-prints 1710.01968

    Google Scholar 

  21. António CC (2014) A memetic algorithm based on multiple learning procedures for global optimal design of composite structures. Memetic Computing 6(2):113–131

    Article  Google Scholar 

  22. Arab A, Alfi A (2015) An adaptive gradient descent-based local search in memetic algorithm applied to optimal controller design. Inf Sci 299:117–142

    Article  MathSciNet  Google Scholar 

  23. Arango-Serna MD, Serna-Uran CA, Zapata-Cortes JA (2018) Multi-agent System Modeling for the Coordination of Processes of Distribution of Goods Using a Memetic Algorithm, Springer International Publishing, pp 71–89. URL https://doi.org/10.1007/978-3-319-56871-3_4

    Google Scholar 

  24. Arivudainambi D, Balaji S (2017) Improved memetic algorithm for energy efficient sensor scheduling with adjustable sensing range. Wireless Personal Communications 95(2):1737–1758, URL https://doi.org/10.1007/s11277-016-3883-7

    Article  Google Scholar 

  25. Asgari N, Rajabi M, Jamshidi M, Khatami M, Farahani RZ (2017) A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study. Annals of Operations Research 250(2):279–308, URL https://doi.org/10.1007/s10479-016-2248-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Assad A, Deep K (2017) Harmony search based memetic algorithms for solving Sudoku. International Journal of System Assurance Engineering and Management URL https://doi.org/10.1007/s13198-017-0620-x

    Article  Google Scholar 

  27. Ayadi R, Benadada Y (2013) Memetic algorithm for a multi-objective vehicle routing problem with multiple trips. IJCSA 10(2):72–91

    Google Scholar 

  28. Azad AS, Islam M, Chakraborty S (2017) A heuristic initialized stochastic memetic algorithm for MDPVRP with interdependent depot operations. IEEE Transactions on Cybernetics 47(12):4302–4315, https://doi.org/10.1109/TCYB.2016.2607220

    Article  Google Scholar 

  29. Azad AS, Islam MM, Chakraborty S (2017) A Heuristic Initialized Stochastic Memetic Algorithm for MDPVRP With Interdependent Depot Operations. IEEE Transactions on Cybernetics 47(12):4302–4315, URL https://doi.org/10.1109/TCYB.2016.2607220

    Article  Google Scholar 

  30. Azevedo CRB, Gordon VS (2009) Adaptive terrain-based memetic algorithms. In: GECCO, ACM, pp 747–754

    Google Scholar 

  31. Aziz M, Tayarani-N M (2014) An adaptive memetic particle swarm optimization algorithm for finding large-scale Latin hypercube designs. Eng Appl of AI 36:222–237

    Article  Google Scholar 

  32. Aziz M, Tayarani-N M, Meybodi MR (2016) A two-objective memetic approach for the node localization problem in wireless sensor networks. Genetic Programming and Evolvable Machines 17(4):321–358

    Article  Google Scholar 

  33. Baboli M, Abadeh MS (2015) Financial time series prediction by a hybrid memetic computation-based support vector regression (MA-SVR) method. International Journal of Operational Research 23(3):321–339, URLs https://doi.org/10.1504/IJOR.2015.069625, http://www.inderscienceonline.com/doi/abs/10.1504/IJOR.2015.069625, http://www.inderscienceonline.com/doi/pdf/10.1504/IJOR.2015.069625

    Article  MathSciNet  MATH  Google Scholar 

  34. Bader-El-Den MB, Poli R, Fatima S (2009) Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework. Memetic Computing 1(3):205–219, URL https://doi.org/10.1007/s12293-009-0022-y

    Article  Google Scholar 

  35. Ballester EM, Cadenas JM, Ong Y, Acampora G (2016) Memetic music composition. IEEE Trans Evolutionary Computation 20(1):1–15

    Article  Google Scholar 

  36. Bärecke T, Detyniecki M (2007) Memetic algorithms for inexact graph matching. In: IEEE Congress on Evolutionary Computation, IEEE, pp 4238–4245

    Google Scholar 

  37. Begum S, Chakraborty S, Banerjee A, Das S, Sarkar R, Chakraborty D (2018) Gene selection for diagnosis of cancer in microarray data using memetic algorithm. In: Bhateja V, Coello Coello CA, Satapathy SC, Pattnaik PK (eds) Intelligent Engineering Informatics, Springer Singapore, pp 441–449

    Google Scholar 

  38. Behmanesh E, Pannek J (2016) A memetic algorithm with extended random path encoding for a closed-loop supply chain model with flexible delivery. Logistics Research 9(1):22:1–22:12

    Google Scholar 

  39. Behmanesh E, Pannek J (2016) Modeling and random path-based direct encoding for a closed loop supply chain model with flexible delivery paths. IFAC-PapersOnLine 49(2):78–83, URLs https://doi.org/10.1016/j.ifacol.2016.03.014, https://www.sciencedirect.com/science/article/pii/S2405896316300143, 7th {IFAC} Conference on Management and Control of Production and Logistics {MCPL} 2016Bremen, Germany, 22–24 February 2016

    Article  Google Scholar 

  40. Behmanesh E, Pannek J (2018) Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network. International Journal of Industrial and Manufacturing Engineering 12(3):1403, URL http://www.waset.org/abstracts/81478

  41. Belgin O, Karaoglan I, Altiparmak F (2018) Two-echelon vehicle routing problem with simultaneous pickup and delivery: Mathematical model and heuristic approach. Computers & Industrial Engineering 115:1–16, URLs https://doi.org/10.1016/j.cie.2017.10.032, https://www.sciencedirect.com/science/article/pii/S0360835217305193

    Article  Google Scholar 

  42. Benlic U, Hao J (2010) An effective multilevel memetic algorithm for balanced graph partitioning. In: ICTAI (1), IEEE Computer Society, pp 121–128

    Google Scholar 

  43. Benlic U, Hao J (2011) A multilevel memetic approach for improving graph k-partitions. IEEE Trans Evolutionary Computation 15(5):624–642

    Article  Google Scholar 

  44. Bereta M (2018) Baldwin effect and Lamarckian evolution in a memetic algorithm for Euclidean Steiner tree problem. Memetic Computing URL https://link.springer.com/content/pdf/10.1007/s12293-018-0256-7.pdf

  45. Berretta R, Moscato P (1999) The number partitioning problem: An open challenge for evolutionary computation ? In: Corne D, Dorigo M, Glover F (eds) New Ideas in Optimization, McGraw-Hill, pp 261–278

    Google Scholar 

  46. Berretta R, Rodrigues LF (2004) A memetic algorithm for a multistage capacitated lot-sizing problem. International Journal of Production Economics 87(1):67–81, URLs http://dx.doi.org/10.1016/S0925-5273(03)00093-8, http://www.sciencedirect.com/science/article/pii/S0925527303000938

    Article  Google Scholar 

  47. Berretta R, Cotta C, Moscato P (2004) Enhancing the Performance of Memetic Algorithms by Using a Matching-Based Recombination Algorithm, Springer US, Boston, MA, pp 65–90. URL https://doi.org/10.1007/978-1-4757-4137-7_4

    Google Scholar 

  48. Bhowmik P, Rakshit P, Konar A, Kim E, Nagar AK (2012) DE-TDQL: an adaptive memetic algorithm. In: IEEE Congress on Evolutionary Computation, IEEE, pp 1–8

    Google Scholar 

  49. Biedermann S, Henzinger M, Schulz C, Schuster B (2018) Memetic Graph Clustering. ArXiv e-prints 1802.07034

    Google Scholar 

  50. Blocho M, Nalepa J (2018) Complexity analysis of the parallel memetic algorithm for the pickup and delivery problem with time windows. In: Gruca A, Czachórski T, Harezlak K, Kozielski S, Piotrowska A (eds) Man-Machine Interactions 5, Springer International Publishing, Cham, pp 471–480

    Chapter  Google Scholar 

  51. Bódis T, Botzheim J (2018) Bacterial Memetic Algorithms for Order Picking Routing Problem with Loading Constraints. Expert Systems with Applications 105:196–220, URL https://www.sciencedirect.com/science/article/pii/S0957417418301891

    Article  Google Scholar 

  52. Böning C, Prinzhorn H, Hund EC, Stonis M (2017) A memetic algorithm for an energy-costs-aware flexible job-shop scheduling problem. Int J Soc Behav Educ Econ Bus Ind Eng 11(5):1223–1236

    Google Scholar 

  53. Bontoux B, Artigues C, Feillet D (2010) A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem. Computers & OR 37(11):1844–1852, URL https://doi.org/10.1016/j.cor.2009.05.004

    Article  MathSciNet  MATH  Google Scholar 

  54. Borchani R, Elloumi A, Masmoudi M (2017) Variable neighborhood descent search based algorithms for course timetabling problem: Application to a Tunisian university. Electronic Notes in Discrete Mathematics 58:119–126, URLs https://doi.org/10.1016/j.endm.2017.03.016, https://www.sciencedirect.com/science/article/pii/S1571065317300525, 4th International Conference on Variable Neighborhood Search

    Article  MathSciNet  MATH  Google Scholar 

  55. Borschbach M, Exeler A (2008) A tabu history driven crossover operator design for memetic algorithm applied to max-2sat-problems. In: GECCO, ACM, pp 605–606

    Google Scholar 

  56. Boskovic B, Brglez F, Brest J (2014) Low-autocorrelation binary sequences: on the performance of memetic-tabu and self-avoiding walk solvers. CoRR abs/1406.5301

    Google Scholar 

  57. Bosman PAN (ed) (2017) Genetic and Evolutionary Computation Conference, Berlin, Germany, July 15–19, 2017, Companion Material Proceedings, ACM, URL http://doi.acm.org/10.1145/3067695

    Google Scholar 

  58. Botzheim J (2012) A novel diversity induction method for bacterial memetic algorithm by hibernation of individuals. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing, ICGEC 2012, Kitakyushu, Japan, August 25–28, 2012, IEEE, pp 328–331, URL https://doi.org/10.1109/ICGEC.2012.25

  59. Botzheim J, Földesi P, Kóczy LT (2009) Solution for fuzzy road transport traveling salesman problem using eugenic bacterial memetic algorithm. In: Carvalho JP, Dubois D, Kaymak U, da Costa Sousa JM (eds) Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July 20–24, 2009, pp 1667–1672, URL http://www.eusflat.org/proceedings/IFSA-EUSFLAT_2009/pdf/tema_1667.pdf

  60. Brandner H, Lessmann S, Voß S (2013) A memetic approach to construct transductive discrete support vector machines. European Journal of Operational Research 230(3):581–595

    Article  Google Scholar 

  61. Buriol LS, França M, Moscato P (2004) A new memetic algorithm for the asymmetric traveling salesman problem. J Heuristics 10(5):483–506, URL https://doi.org/10.1023/B:HEUR.0000045321.59202.52

    Article  MATH  Google Scholar 

  62. Burke EK, Ross P (eds) (1996) Practice and Theory of Automated Timetabling, First International Conference, Edinburgh, U.K., August 29 - September 1, 1995, Selected Papers, Lecture Notes in Computer Science, vol 1153, Springer, URL https://doi.org/10.1007/3-540-61794-9

    Google Scholar 

  63. Burke EK, Newall JP, Weare RF (1995) A memetic algorithm for university exam timetabling. In: [62], pp 241–250, URL https://doi.org/10.1007/3-540-61794-9_63

    Chapter  Google Scholar 

  64. Cai X, Cheng X, Fan Z, Goodman E, Wang L (2017) An adaptive memetic framework for multi-objective combinatorial optimization problems: studies on software next release and travelling salesman problems. Soft Computing 21(9):2215–2236, URL https://doi.org/10.1007/s00500-015-1921-0

    Article  Google Scholar 

  65. Cai X, Cheng X, Fan Z, Goodman ED, Wang L (2017) An adaptive memetic framework for multi-objective combinatorial optimization problems: studies on software next release and travelling salesman problems. Soft Comput 21(9):2215–2236

    Article  Google Scholar 

  66. Calderín JF, Masegosa AD, Rosete-Suárez A, Pelta DA (2013) Adaptation schemes and dynamic optimization problems: A basic study on the adaptive hill climbing memetic algorithm. In: NICSO, Springer, Studies in Computational Intelligence, vol 512, pp 85–97

    Article  Google Scholar 

  67. Calderín JF, Masegosa AD, Pelta DA (2017) An algorithm portfolio for the dynamic maximal covering location problem. Memetic Computing 9(2):141–151

    Article  Google Scholar 

  68. Capitanescu F, Marvuglia A, Benetto E, Ahmadi A, Tiruta-Barna L (2017) Linear programming-based directed local search for expensive multi-objective optimization problems: Application to drinking water production plants. European Journal of Operational Research 262(1):322–334, URL https://doi.org/10.1016/j.ejor.2017.03.057

    Article  MathSciNet  MATH  Google Scholar 

  69. Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans Systems, Man, and Cybernetics, Part B 37(1):28–41

    Article  Google Scholar 

  70. Carlos C, E GJ, Luke M, Pablo M (2016) Memetic Algorithms: A Contemporary Introduction, American Cancer Society, pp 1–15. URLs https://doi.org/10.1002/047134608X.W8330, https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8330, https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W8330

  71. Carrabs F, Cerrone C, Cerulli R (2014) A memetic algorithm for the weighted feedback vertex set problem. Networks 64(4):339–356, URL http://dx.doi.org/10.1002/net.21577

    Article  MathSciNet  Google Scholar 

  72. Castro M, Sörensen K, Vansteenwegen P, Goos P (2013) A memetic algorithm for the travelling salesperson problem with hotel selection. Computers & OR 40(7):1716–1728

    Article  MathSciNet  MATH  Google Scholar 

  73. Cattaruzza D, Absi N, Feillet D, Vidal T (2014) A memetic algorithm for the multi trip vehicle routing problem. European Journal of Operational Research 236(3):833–848

    Article  MathSciNet  MATH  Google Scholar 

  74. Cerrone C, Cerulli R, Raiconi A (2014) Relations, models and a memetic approach for three degree-dependent spanning tree problems. European Journal of Operational Research 232(3):442–453

    Article  MathSciNet  MATH  Google Scholar 

  75. Chagas JBC, Santos AG, Souza MJF (2018) A memetic algorithm for the network construction problem with due dates. In: Abraham A, Muhuri PK, Muda AK, Gandhi N (eds) Intelligent Systems Design and Applications, Springer International Publishing, Cham, pp 209–220

    Chapter  Google Scholar 

  76. Chalupa D (2017) A Memetic Algorithm for the Minimum Conductance Graph Partitioning Problem. ArXiv e-prints 1704.02854

    Google Scholar 

  77. Chalupa D, Hawick KA, Walker JA (2018) Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks. Big Data Research URL https://www.sciencedirect.com/science/article/pii/S2214579617303738

  78. Chawla V, Chanda AK, Angra S (2018) Scheduling of multi load AGVs in FMS by modified memetic particle swarm optimization algorithm. Journal of Project Management 3(1):39–54

    Article  Google Scholar 

  79. Chen C, Mukhopadhyay SC, Chuang C, Lin T, Liao M, Wang Y, Jiang J (2015) A hybrid memetic framework for coverage optimization in wireless sensor networks. IEEE Trans Cybernetics 45(10):2309–2322

    Article  Google Scholar 

  80. Chen C, Chen X, Wang L, Ma X, Wang Z, Liu K, Guo B, Zhou Z (2017) MA-SSR: A memetic algorithm for skyline scenic routes planning leveraging heterogeneous user-generated digital footprints. IEEE Trans Vehicular Technology 66(7):5723–5736, URL https://doi.org/10.1109/TVT.2016.2639550

    Article  Google Scholar 

  81. Chen J, Liu Y, Zhu Z, Zhu W (2017) An adaptive hybrid memetic algorithm for thermal-aware non-slicing VLSI floorplanning. Integration 58:245–252

    Article  Google Scholar 

  82. Chen Q, Ma X, Sun Y, Zhu Z (2017) Adaptive memetic algorithm based evolutionary multi-tasking single-objective optimization. In: Shi Y, Tan KC, Zhang M, Tang K, Li X, Zhang Q, Tan Y, Middendorf M, Jin Y (eds) Simulated Evolution and Learning, Springer International Publishing, Cham, pp 462–472

    Chapter  Google Scholar 

  83. Chen Q, Ma X, Zhu Z, Sun Y (2017) Evolutionary multi-tasking single-objective optimization based on cooperative co-evolutionary memetic algorithm. In: 2017 13th International Conference on Computational Intelligence and Security (CIS), pp 197–201, https://doi.org/10.1109/CIS.2017.00050

  84. Chen X, Ong Y, Lim M, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evolutionary Computation 15(5):591–607, URL https://doi.org/10.1109/TEVC.2011.2132725

    Article  Google Scholar 

  85. Chen X, Zhang P, Du G, Li F (2018) Ant colony optimization based memetic algorithm to solve bi-objective multiple traveling salesmen problem for multi-robot systems. IEEE Access URL https://ieeexplore.ieee.org/abstract/document/8341754/

  86. Chen Z, Li S, Yue W (2014) Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks. Sensors 14(11):20,500–20,518

    Article  Google Scholar 

  87. Chen Z, Wang R, Sánchez RV, de Oliveira JV, Li C (2018) An adaptive genomic difference based genetic algorithm and its application to memetic continuous optimization. Intell Data Anal 22(2):363–382

    Article  Google Scholar 

  88. Cheng X, Huang Y, Cai X, Wei O (2014) An adaptive memetic algorithm based on multiobjective optimization for software next release problem. In: GECCO (Companion), ACM, pp 185–186

    Google Scholar 

  89. Cheng YH, Lai CM (2017) Control strategy optimization for parallel hybrid electric vehicles using a memetic algorithm. Energies 10(3), URLs https://doi.org/10.3390/en10030305, http://www.mdpi.com/1996-1073/10/3/305

    Article  Google Scholar 

  90. Cheng YH, Lai CM, Teh J (2017) Memetic algorithm for fuel economy and low emissions parallel hybrid electric vehicles. In: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), pp 219–222, https://doi.org/10.1109/ICAwST.2017.8256449

  91. Chertov O, Tavrov D (2014) Two-phase memetic modifying transformation for solving the task of providing group anonymity. In: WCSC, Springer, Studies in Fuzziness and Soft Computing, vol 342, pp 239–253

    Article  MathSciNet  MATH  Google Scholar 

  92. Coll P, Durán G, Moscato P (1999) On worst-case and comparative analysis as design principles for efficient recombination operators: A graph coloring case study. In: Corne D, Dorigo M, Glover F (eds) New Ideas in Optimization, McGraw-Hill, pp 279–294

    Google Scholar 

  93. Colmenar J, Martí R, Duarte A (2018) Multi-objective memetic optimization for the bi-objective obnoxious p-median problem. Knowledge-Based Systems 144:88 – 101, URLs https://doi.org/10.1016/j.knosys.2017.12.028, http://www.sciencedirect.com/science/article/pii/S0950705117306068

    Article  Google Scholar 

  94. Colombo A, Caro LD, Galli DE (2017) Memetic phase retrieval and HPC for the imaging of matter at atomic resolution. In: Parallel Computing is Everywhere, Proceedings of the International Conference on Parallel Computing, ParCo 2017, 12–15 September 2017, Bologna, Italy, pp 67–76, URL https://doi.org/10.3233/978-1-61499-843-3-67

  95. Colombo A, Galli DE, De Caro L, Scattarella F, Carlino E (2017) Facing the phase problem in coherent diffractive imaging via memetic algorithms. Scientific Reports 7:42,236, URL https://www.nature.com/articles/srep42236

  96. Conant-Pablos SE, Magaña-Lozano DJ, Terashima-Marín H (2009) Pipelining memetic algorithms, constraint satisfaction, and local search for course timetabling. In: Aguirre AH, Borja RM, García CAR (eds) MICAI 2009: Advances in Artificial Intelligence, 8th Mexican International Conference on Artificial Intelligence, Guanajuato, México, November 9–13, 2009. Proceedings, Springer, Lecture Notes in Computer Science, vol 5845, pp 408–419, URL https://doi.org/10.1007/978-3-642-05258-3_36

    Chapter  Google Scholar 

  97. Costa D (1995) An evolutionary tabu search algorithm and the NHL scheduling problem. INFOR: Information Systems and Operational Research 33(3):161–178, URL http://dx.doi.org/10.1080/03155986.1995.11732279

    MATH  Google Scholar 

  98. Cotta C, Moscato P (2003) A memetic-aided approach to hierarchical clustering from distance matrices: application to gene expression clustering and phylogeny. Biosystems 72(1):75–97, URLs http://dx.doi.org/10.1016/S0303-2647(03)00136-9, http://www.sciencedirect.com/science/article/pii/S0303264703001369, computational Intelligence in Bioinformatics

    Article  Google Scholar 

  99. Cotta C, Moscato P (2004) Evolutionary computation: Challenges and duties. In: Menon A (ed) Frontiers of Evolutionary Computation, Springer US, Boston, MA, pp 53–72, URL https://doi.org/10.1007/1-4020-7782-3_3

    Chapter  Google Scholar 

  100. Cotta C, Moscato P (2005) The parameterized complexity of multiparent recombination. In: Proceedings of the Sixth Metaheuristics International Conference (MIC 2005), Vienna, Austria, August 22–26, 2005, pp 237–242

    Google Scholar 

  101. Cotta C, Moscato P (2007) Memetic algorithms. In: Gonzalez TF (ed) Handbook of Approximation Algorithms and Metaheuristics., Chapman and Hall/CRC, URL https://doi.org/10.1201/9781420010749.ch27

    Google Scholar 

  102. Cotta C, Mathieson L, Moscato P (2017) Memetic Algorithms, Springer International Publishing, Cham, pp 1–32. URL https://doi.org/10.1007/978-3-319-07153-4_29-1

    Google Scholar 

  103. Créput J, Koukam A (2009) A memetic neural network for the Euclidean traveling salesman problem. Neurocomputing 72(4–6):1250–1264, URL https://doi.org/10.1016/j.neucom.2008.01.023

    Article  Google Scholar 

  104. Dang HV, Kinsner W (2016) Adaptive multiobjective memetic optimization. IJCINI 10(4):21–58

    Google Scholar 

  105. Dang HV, Kinsner W (2016) An information theoretic criterion for adaptive multiobjective memetic optimization. In: ICCI*CC, IEEE Computer Society, pp 15–28

    Google Scholar 

  106. D’Aniello G, Orciuoli F, Parente M, Vitiello A (2014) Enhancing an AmI-based framework for u-commerce by applying memetic algorithms to plan shopping. In: INCoS, IEEE, pp 169–175

    Google Scholar 

  107. Decerle J, Grunder O, El Hassani AH, Barakat O (2018) A memetic algorithm for a home health care routing and scheduling problem. Operations Research for Health Care 16:59–71, URLs https://doi.org/10.1016/j.orhc.2018.01.004, http://www.sciencedirect.com/science/article/pii/S2211692317300735

    Article  Google Scholar 

  108. Deng J, Wang L (2017) A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm and Evolutionary Computation 32:121–131, https://doi.org/10.1016/j.swevo.2016.06.002, URL http://www.sciencedirect.com/science/article/pii/S2210650216300281

    Article  Google Scholar 

  109. Dib O, Caminada A, Manier MA, Moalic L (2017) A memetic algorithm for computing multicriteria shortest paths in stochastic multimodal networks. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, GECCO ‘17, pp 103–104, URLs https://doi.org/10.1145/3067695.3076064, http://doi.acm.org/10.1145/3067695.3076064

  110. Dinneen MJ, Wei K (2013) A (1+1) adaptive memetic algorithm for the maximum clique problem. In: IEEE Congress on Evolutionary Computation, IEEE, pp 1626–1634

    Google Scholar 

  111. Dinneen MJ, Wei K (2013) On the analysis of a (1+1) adaptive memetic algorithm. In: Memetic Computing, IEEE, pp 24–31

    Google Scholar 

  112. Divsalar A, Vansteenwegen P, Sörensen K, Cattrysse D (2014) A memetic algorithm for the orienteering problem with hotel selection. European Journal of Operational Research 237(1):29–49

    Article  MATH  Google Scholar 

  113. Dominguez-Isidro S, Mezura-Montes E (2017) The Baldwin effect on a memetic differential evolution for constrained numerical optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, GECCO ‘17, pp 203–204, URL http://doi.acm.org/10.1145/3067695.3076096

  114. Domínguez-Isidro S, Mezura-Montes E (2017) Study of direct local search operators influence in memetic differential evolution for constrained numerical optimization problems. In: 2017 International Conference on Electronics, Communications and Computers, CONIELECOMP 2017, Cholula, Mexico, February 22–24, 2017, pp 1–8, URL https://doi.org/10.1109/CONIELECOMP.2017.7891831

  115. Dorronsoro B, Alba E, Luque G, Bouvry P (2008) A self-adaptive cellular memetic algorithm for the DNA fragment assembly problem. In: IEEE Congress on Evolutionary Computation, IEEE, pp 2651–2658

    Google Scholar 

  116. Du W, Liang B, Yan G, Lordan O, Cao X (2016) Identifying vital edges in Chinese air route network via memetic algorithm. CoRR abs/1608.00142

    Google Scholar 

  117. Du W, Liang B, Yan G, Lordan O, Cao X (2017) Identifying vital edges in Chinese air route network via memetic algorithm. Chinese Journal of Aeronautics 30(1):330–336, URLs https://doi.org/10.1016/j.cja.2016.12.001, http://www.sciencedirect.com/science/article/pii/S1000936116302163

    Article  Google Scholar 

  118. Duan W, Li Z, Yang Y, Liu B, Wang K (2017) EDA based probabilistic Memetic Algorithm for distributed blocking permutation flowshop scheduling with sequence dependent setup time. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 992–999, https://doi.org/10.1109/CEC.2017.7969416

  119. Dulebenets MA (2017) A novel memetic algorithm with a deterministic parameter control for efficient berth scheduling at marine container terminals. Maritime Business Review 2(4):302–330, URL https://www.emeraldinsight.com/doi/abs/10.1108/MABR-04-2017-0012

    Article  Google Scholar 

  120. E Behmanesh JP, Behmanesh E, Pannek J (2018) Ranking Parameters of a Memetic Algorithm for a Flexible Integrated Logistics Network. In: Freitag M, Kotzab H, Pannek J (eds) Dynamics in Logistics, Springer International Publishing, pp 76–85

    Google Scholar 

  121. El-Fallahi A, Prins C, Calvo RW (2008) A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem. Computers & OR 35(5):1725–1741

    Article  MATH  Google Scholar 

  122. El-Yaakoubi A, El-Fallahi A, Cherkaoui M, Reghioui M (2017) Tabu Search and Memetic Algorithms for a Real Scheduling and Routing Problem. Logistics Research 10(7), URL https://www.bvl.de/files/1951/1988/1852/2239/10.23773-2017_7.pdf

  123. Ellabaan MMH, Chen X, Nguyen QH (2012) Multi-modal valley-adaptive memetic algorithm for efficient discovery of first-order saddle points. In: SEAL, Springer, Lecture Notes in Computer Science, vol 7673, pp 83–92

    Article  Google Scholar 

  124. Eremeev AV (2008) On complexity of optimal recombination for binary representations of solutions. Evolutionary Computation 16(1):127–147, URL http://dx.doi.org/10.1162/evco.2008.16.1.127

    Article  Google Scholar 

  125. Eremeev AV, Kovalenko JV (2014) Optimal recombination in genetic algorithms for combinatorial optimization problems: Part ii. Yugoslav Journal of Operations Research 24:165–186

    Article  MATH  Google Scholar 

  126. Farkas M, Földesi P, Botzheim J, Kóczy LT (2009) Approximation of a modified traveling salesman problem using bacterial memetic algorithms. In: Rudas IJ, Fodor JC, Kacprzyk J (eds) Towards Intelligent Engineering and Information Technology, Studies in Computational Intelligence, vol 243, Springer, pp 607–625, URL https://doi.org/10.1007/978-3-642-03737-5_44

    Google Scholar 

  127. Fatnassi E, Chebbi O, Chaouachi J (2016) Discrete honeybee mating optimization algorithm for the routing of battery-operated automated guidance electric vehicles in personal rapid transit systems. Swarm and Evolutionary Computation 26:35–49, URLs https://doi.org/10.1016/j.swevo.2015.08.001, https://www.sciencedirect.com/science/article/pii/S2210650215000619

    Article  Google Scholar 

  128. Fdhila W, Rinderle-Ma S, Indiono C (2014) Memetic algorithms for mining change logs in process choreographies. In: ICSOC, Springer, Lecture Notes in Computer Science, vol 8831, pp 47–62

    Article  Google Scholar 

  129. Feng L, Ong Y, Lim M, Tsang IW (2015) Memetic search with interdomain learning: A realization between CVRP and CARP. IEEE Trans Evolutionary Computation 19(5):644–658

    Article  Google Scholar 

  130. Feng L, Ong Y, Tan A, Tsang IW (2015) Memes as building blocks: a case study on evolutionary optimization + transfer learning for routing problems. Memetic Computing 7(3):159–180, URL https://doi.org/10.1007/s12293-015-0166-x

    Article  Google Scholar 

  131. Feng L, Ong Y, Chen C, Chen X (2016) Conceptual modeling of evolvable local searches in memetic algorithms using linear genetic programming: a case study on capacitated vehicle routing problem. Soft Comput 20(9):3745–3769, URL https://doi.org/10.1007/s00500-015-1971-3

    Article  Google Scholar 

  132. Fernández-Leiva AJ, Gutiérrez-Fuentes Á (2018) On distributed user-centric memetic algorithms. Soft Computing URL https://link.springer.com/article/10.1007/s00500-018-3049-5

  133. Fidanova S, Alba E, Molina G (2008) Memetic simulated annealing for the GPS surveying problem. In: NAA, Springer, Lecture Notes in Computer Science, vol 5434, pp 281–288

    Article  Google Scholar 

  134. Fischer T, Stützle T, Hoos H, Merz P (2005) An analysis of the hardness of TSP instances for two high performance algorithms. In: Proceedings of the Sixth Metaheuristics International Conference (MiC 2005), Vienna, Austria, August 22–26, 2005, pp 361–367

    Google Scholar 

  135. Földesi P, Botzheim J (2010) Modeling of loss aversion in solving fuzzy road transport traveling salesman problem using eugenic bacterial memetic algorithm. Memetic Computing 2(4):259–271, URL https://doi.org/10.1007/s12293-010-0037-4

    Article  Google Scholar 

  136. Fonseca GHG, Santos HG (2013) Memetic algorithms for the high school timetabling problem. In: [1], pp 666–672, URL https://doi.org/10.1109/CEC.2013.6557632

  137. França PM, Mendes A, Moscato P (2001) A memetic algorithm for the total tardiness single machine scheduling problem. European Journal of Operational Research 132(1):224–242, URL https://doi.org/10.1016/S0377-2217(00)00140-5

    Article  MathSciNet  MATH  Google Scholar 

  138. França PM, Gupta JN, Mendes AS, Moscato P, Veltink KJ (2005) Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups. Computers and Industrial Engineering 48(3):491–506, URLs http://dx.doi.org/10.1016/j.cie.2003.11.004, http://www.sciencedirect.com/science/article/pii/S0360835204001986, groupTechnology/Cellular Manufacturing

  139. Fraser G, Arcuri A, McMinn P (2015) A memetic algorithm for whole test suite generation. Journal of Systems and Software 103:311–327

    Article  Google Scholar 

  140. de Freitas ARR, Guimarães FG, Silva RCP, Souza MJF (2014) Memetic self-adaptive evolution strategies applied to the maximum diversity problem. Optimization Letters 8(2):705–714

    Article  MathSciNet  MATH  Google Scholar 

  141. Freitas ARR, Silva VMR, Campelo F, Guimarães FG (2014) Optimizing two-level reverse distribution networks with hybrid memetic algorithms. Optimization Letters 8(2):753–762

    Article  MathSciNet  MATH  Google Scholar 

  142. Friedman JH, Tukey JW (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Trans Computers 23(9):881–890, URL https://doi.org/10.1109/T-C.1974.224051

    Article  MATH  Google Scholar 

  143. Fu Z, Hao J (2015) Dynamic programming driven memetic search for the Steiner tree problem with revenues, budget, and hop constraints. INFORMS Journal on Computing 27(2):221–237

    Article  MathSciNet  MATH  Google Scholar 

  144. Gajda-Zagórska E, Schaefer R, Smolka M, Pardo D, Álvarez-Aramberri J (2017) A multi-objective memetic inverse solver reinforced by local optimization methods. Journal of Computational Science 18:85–94

    Article  Google Scholar 

  145. Galinier P, Boujbel Z, Fernandes MC (2011) An efficient memetic algorithm for the graph partitioning problem. Annals OR 191(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  146. Gallardo JE, Cotta C (2015) A grasp-based memetic algorithm with path relinking for the far from most string problem. Eng Appl of AI 41:183–194, URL https://doi.org/10.1016/j.engappai.2015.01.020

    Article  Google Scholar 

  147. Ganjefar S, Tofighi M (2018) Optimization of quantum-inspired neural network using memetic algorithm for function approximation and chaotic time series prediction. Neurocomputing 291:175–186, URL https://www.sciencedirect.com/science/article/pii/S0925231218302418

    Article  Google Scholar 

  148. Gao D, Cai Z (2017) Community mining algorithm of complex network based on memetic algorithm. In: ISPACS, IEEE, pp 450–455

    Google Scholar 

  149. Garbelini JMC, Kashiwabara AY, Sanches DS (2018) Sequence motif finder using memetic algorithm. BMC bioinformatics 19(1)

    Google Scholar 

  150. Garcia V, França PM, Mendes A, Moscato P (2006) A parallel memetic algorithm applied to the total tardiness machine scheduling problem. In: 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), Proceedings, 25–29 April 2006, Rhodes Island, Greece, IEEE, URL https://doi.org/10.1109/IPDPS.2006.1639514

  151. García-Pedrajas N, de Haro-García A, Pérez-Rodríguez J (2014) A scalable memetic algorithm for simultaneous instance and feature selection. Evolutionary Computation 22(1):1–45

    Article  Google Scholar 

  152. Garza-Fabre M, Kandathil SM, Handl J, Knowles JD, Lovell SC (2016) Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction. Evolutionary Computation 24(4):577–607, URL https://doi.org/10.1162/EVCO_a_00176

    Article  Google Scholar 

  153. Ghosh M, Malakar S, Bhowmik S, Sarkar R, Nasipuri M (2017) Memetic algorithm based feature selection for handwritten city name recognition. In: Mandal JK, Dutta P, Mukhopadhyay S (eds) Computational Intelligence, Communications, and Business Analytics, Springer Singapore, Singapore, pp 599–613

    Google Scholar 

  154. Godinho P, Moutinho L, Pagani M (2017) A memetic algorithm for maximizing earned attention in social media. Journal of Modelling in Management 12(3):364–385, URL https://doi.org/10.1108/JM2-10-2015-0078

  155. Goh CK, Lim D, Ma L, Ong Y, Dutta PS (2011) A surrogate-assisted memetic co-evolutionary algorithm for expensive constrained optimization problems. In: IEEE Congress on Evolutionary Computation, IEEE, pp 744–749

    Google Scholar 

  156. Gong M, Peng Z, Ma L, Huang J (2016) Global biological network alignment by using efficient memetic algorithm. IEEE/ACM Trans Comput Biology Bioinform 13(6):1117–1129

    Article  Google Scholar 

  157. Gong M, Song C, Duan C, Ma L, Shen B (2016) An efficient memetic algorithm for influence maximization in social networks. IEEE Comp Int Mag 11(3):22–33

    Article  Google Scholar 

  158. Gong X, Deng Q, Gong G, Liu W, Ren Q (2017) A memetic algorithm for multi-objective flexible job-shop problem with worker flexibility. International Journal of Production Research URL http://www.tandfonline.com/doi/abs/10.1080/00207543.2017.1388933

  159. Gong YJ, Ge YF, Li JJ, Zhang J, Ip W (2016) A splicing-driven memetic algorithm for reconstructing cross-cut shredded text documents. Applied Soft Computing 45:163–172, URLs https://doi.org/10.1016/j.asoc.2016.03.024, http://www.sciencedirect.com/science/article/pii/S1568494616301338

    Article  Google Scholar 

  160. González OM, Segura C, Peña SIV, León C (2017) A memetic algorithm for the Capacitated Vehicle Routing Problem with Time Windows. In: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, pp 2582–2589, https://doi.org/10.1109/CEC.2017.7969619

  161. González OM, Segura C, Peña SIV (2018) A parallel memetic algorithm to solve the capacitated vehicle routing problem with time windows. International Journal of Combinatorial Optimization Problems and Informatics 9(1):35–45

    Google Scholar 

  162. Goweda A, Elmogy M, Barakat S (2017) Blending Memetic Search Strategy with K-Nearest Neighbor Algorithm for Cancer Classification Problem. Journal of Next Generation Information Technology 8(3)

    Google Scholar 

  163. Guo X, Wu Z, Yang G (2005) A hybrid adaptive multi-objective memetic algorithm for 0/1 knapsack problem. In: Australian Conference on Artificial Intelligence, Springer, Lecture Notes in Computer Science, vol 3809, pp 176–185

    MathSciNet  MATH  Google Scholar 

  164. Guo Z, Shi L, Chen L, Liang Y (2017) A harmony search-based memetic optimization model for integrated production and transportation scheduling in MTO manufacturing. Omega 66:327–343, URLs https://doi.org/10.1016/j.omega.2015.10.012, http://www.sciencedirect.com/science/article/pii/S0305048315002169, new Research Frontiers in Sustainability

    Article  Google Scholar 

  165. Gupta S, Sahni H (2018) Memes evolution technique in memetic particle swarm optimization. International Journal of Applied Engineering Research 13(8):6477–6486

    Google Scholar 

  166. Gutin G, Karapetyan D (2010) A memetic algorithm for the generalized traveling salesman problem. Natural Computing 9(1):47–60, URL https://doi.org/10.1007/s11047-009-9111-6

    Article  MathSciNet  MATH  Google Scholar 

  167. H Du J Wang XHWD (2017) A memetic algorithm to optimize critical diameter. Swarm and Evolutionary Computation URL https://www.sciencedirect.com/science/article/pii/S2210650217301414

  168. Handoko SD, Nguyen DT, Yuan Z, Lau HC (2014) Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem. In: GECCO (Companion), ACM, pp 193–194

    Google Scholar 

  169. Haque MN, Mathieson L, Moscato P (2017) A memetic algorithm for community detection by maximising the connected cohesion. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–8, https://doi.org/10.1109/SSCI.2017.8285404

  170. Harrabi O, Fatnassi E, Bouziri H, Chaouachi J (2017) A bi-objective memetic algorithm proposal for solving the minimum sum coloring problem. In: GECCO (Companion), ACM, pp 27–28

    Google Scholar 

  171. Harrabi O, Fatnassi E, Bouziri H, Chaouachi J (2017) A bi-objective memetic algorithm proposal for solving the minimum sum coloring problem. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, GECCO ‘17, pp 27–28 URL http://doi.acm.org/10.1145/3067695.3082035

  172. Hart WE (2003) Locally-adaptive and memetic evolutionary pattern search algorithms. Evolutionary Computation 11(1):29–51

    Article  Google Scholar 

  173. Hart WE, Ktaliorasnogor N, Smith JE (2004) Editorial introduction special issue on memetic algorithms. Evolutionary Computation 12(3):v–vi, URL https://doi.org/10.1162/1063656041775009

    Article  Google Scholar 

  174. Havemann F, Gläser J, Heinz M (2015) A link-based memetic algorithm for reconstructing overlapping topics from networks of papers and their cited sources. In: ISSI, Bogaziçi University Printhouse

    Google Scholar 

  175. Havemann F, Gläser J, Heinz M (2017) Memetic search for overlapping topics based on a local evaluation of link communities. Scientometrics 111(2):1089–1118, URL https://doi.org/10.1007/s11192-017-2302-5

    Article  Google Scholar 

  176. Hernandez Mejia JA, Schütze O, Cuate O, Lara A, Deb K (2017) RDS-NSGA-II: a memetic algorithm for reference point based multi-objective optimization. Engineering Optimization 49(5):828–845

    Article  MathSciNet  Google Scholar 

  177. Herrera-Poyatos A, Herrera F (2017) Genetic and memetic algorithm with diversity equilibrium based on greedy diversification. CoRR abs/1702.03594, URL http://arxiv.org/abs/1702.03594

  178. Hofmann R (1992) Parallel evolutionary trajectories. Research Report SS92-11, Edinburgh Parallel Computing Centre

    Google Scholar 

  179. Holstein D, Moscato P (1999) Memetic algorithms using guided local search: A case study. In: Corne D, Dorigo M, Glover F (eds) New Ideas in Optimization, McGraw-Hill, pp 235–244

    Google Scholar 

  180. Hou Y, Feng L, Ong Y (2016) Creating human-like non-player game characters using a memetic multi-agent system. In: IJCNN, IEEE, pp 177–184

    Google Scholar 

  181. Houari H, Houbad Y, Souier M, Sari Z, Nassima K (2017) Adaptation of Memetic Algorithm with Population Management for the Improvement of the Performances of Flexible Manufacturing Systems. The Open Automation and Control Systems Journal 10, URL https://benthamopen.com/FULLTEXT/TOAUTOCJ-9-2

  182. Hu Q, Wei L, Lim A (2017) The two-dimensional vector packing problem with general costs. Omega URLs http://dx.doi.org/10.1016/j.omega.2017.01.006, http://www.sciencedirect.com/science/article/pii/S030504831730052X

  183. Hu Z, Bao Y, Xiong T (2014) Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression. Appl Soft Comput 25:15–25

    Article  Google Scholar 

  184. Hu Z, Bao Y, Chiong R, Xiong T (2015) Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection. Energy 84:419–431, URLs http://dx.doi.org/10.1016/j.energy.2015.03.054, http://www.sciencedirect.com/science/article/pii/S0360544215003485

    Article  Google Scholar 

  185. Iglesias A, Gálvez A (2017) Memetic electromagnetism algorithm for surface reconstruction with rational bivariate Bernstein basis functions. Natural Computing 16(4):511–525, URL https://doi.org/10.1007/s11047-016-9562-5

    Article  MathSciNet  Google Scholar 

  186. Iglesias A, Gálvez A, Collantes M (2016) Four adaptive memetic bat algorithm schemes for bézier curve parameterization. Trans Computational Science 28:127–145

    Google Scholar 

  187. Inführ J, Raidl GR (2016) A memetic algorithm for the virtual network mapping problem. J Heuristics 22(4):475–505

    Article  Google Scholar 

  188. Ingels J, Maenhout B (2017) A memetic algorithm to maximise the employee substitutability in personnel shift scheduling. In: EvoCOP, Lecture Notes in Computer Science, vol 10197, pp 44–59

    Article  MathSciNet  MATH  Google Scholar 

  189. Ingels J, Maenhout B (2017) A memetic algorithm to maximise the employee substitutability in personnel shift scheduling. In: Hu B, López-Ibáñez M (eds) Evolutionary Computation in Combinatorial Optimization, Springer International Publishing, Cham, pp 44–59

    Chapter  MATH  Google Scholar 

  190. Inostroza-Ponta M, Berretta R, Mendes A, Moscato P (2006) An automatic graph layout procedure to visualize correlated data. In: Bramer M (ed) Artificial Intelligence in Theory and Practice: IFIP 19th World Computer Congress, TC 12: IFIP AI 2006 Stream, August 21–24, 2006, Santiago, Chile, Springer US, Boston, MA, pp 179–188

    Google Scholar 

  191. Inostroza-Ponta M, Mendes A, Berretta R, Moscato P (2007) An integrated QAP-based approach to visualize patterns of gene expression similarity. In: Proceedings of the 3rd Australian Conference on Progress in Artificial Life, ACAL ‘07, Springer-Verlag, Berlin, Heidelberg, Lecture Notes in Computer Science, vol. 4828, pp 156–167

    Google Scholar 

  192. Inostroza-Ponta M, Berretta R, Moscato P (2011) QAPgrid: A two level QAP-based approach for large-scale data analysis and visualization. PLOS ONE 6(1):1–18, URL https://doi.org/10.1371/journal.pone.0014468

    Article  Google Scholar 

  193. Ishibuchi H, Shibata Y (2004) Mating scheme for controlling the diversity-convergence balance for multiobjective optimization. In: Deb K, Poli R, Banzhaf W, Beyer H, Burke EK, Darwen PJ, Dasgupta D, Floreano D, Foster JA, Harman M, Holland O, Lanzi PL, Spector L, Tettamanzi A, Thierens D, Tyrrell AM (eds) Genetic and Evolutionary Computation - GECCO 2004, Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June 26–30, 2004, Proceedings, Part I, Springer, Lecture Notes in Computer Science, vol 3102, pp 1259–1271, URL https://doi.org/10.1007/978-3-540-24854-5_121

    Chapter  Google Scholar 

  194. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evolutionary Computation 7(2):204–223, URL https://doi.org/10.1109/TEVC.2003.810752

    Article  Google Scholar 

  195. Ishibuchi H, Tanigaki Y, Akedo N, Nojima Y (2013) How to strike a balance between local search and global search in multiobjective memetic algorithms for multiobjective 0/1 knapsack problems. In: [1], pp 1643–1650, URL https://doi.org/10.1109/CEC.2013.6557758

  196. Islam MM, Singh HK, Ray T, Sinha A (2017) An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems. Evolutionary Computation 25(4):607–642

    Article  Google Scholar 

  197. Jain A, Rao GK, Rawat M, Lad BK (2017) Memetic algorithm to optimize level of repair and spare part decisions for fleet system. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp 1935–1939, https://doi.org/10.1109/IEEM.2017.8290229

  198. Jain P, Srivastava K, Saran G (2016) Minimizing cyclic cutwidth of graphs using a memetic algorithm. J Heuristics 22(6):815–848

    Article  Google Scholar 

  199. Jat SN, Yang S (2008) A memetic algorithm for the university course timetabling problem. In: 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2008), November 3–5, 2008, Dayton, Ohio, USA, Volume 1, IEEE Computer Society, pp 427–433, URL https://doi.org/10.1109/ICTAI.2008.126

  200. Jeong J, Kim Y, Ahn CW (2017) A multi-objective evolutionary approach to automatic melody generation. Expert Systems with Applications 90:50–61, URLs https://doi.org/10.1016/j.eswa.2017.08.014, https://www.sciencedirect.com/science/article/pii/S0957417417305511

    Article  Google Scholar 

  201. Jiang L, Xie D (2018) An efficient differential memetic algorithm for clustering problem. IAENG International Journal of Computer Science 45(1), URL http://www.iaeng.org/IJCS/issues_v45/issue_1/IJCS_45_1_17.pdf

  202. Jimenez F, Sanhueza C, Berretta R, Moscato P (2017) A multi-objective approach for the (α, β)-k-feature set problem using memetic algorithms. In: [57], pp 207–208, URL http://doi.acm.org/10.1145/3067695.3076106

  203. Karaoglan I, Altiparmak F (2015) A memetic algorithm for the capacitated location-routing problem with mixed backhauls. Computers & OR 55:200–216

    Article  MathSciNet  MATH  Google Scholar 

  204. Kavakeb S, Nguyen TT, Benmerikhi M, Yang Z, Jenkinson I (2014) An improved memetic algorithm to enhance the sustainability and reliability of transport in container terminals. In: CISDA, IEEE, pp 1–8

    Google Scholar 

  205. Keshanchi B, Navimipour NJ (2016) Priority-based task scheduling in the cloud systems using a memetic algorithm. Journal of Circuits, Systems, and Computers 25(10):1–33

    Article  Google Scholar 

  206. Keshavarz H, Abadeh MS (2017) MVP: Memetic Voter Patterns for aspect extraction in sentiment analysis. In: 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), pp 89–94, https://doi.org/10.1109/CSIEC.2017.7940154

  207. Keshavarz H, Abadeh MS (2017) SOMA: Semantic Orientation inference using Memetic Algorithm. In: 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), pp 83–88, https://doi.org/10.1109/CSIEC.2017.7940153

  208. Kheng CW, Chong SY, Lim M (2012) Centroid-based memetic algorithm - adaptive Lamarckian and Baldwinian learning. Int J Systems Science 43(7):1193–1216

    Article  MathSciNet  MATH  Google Scholar 

  209. Kielarova SW (2016) Development of hybrid memetic algorithm and general regression neural network for generating iterated function system fractals in jewelry design applications. In: ICSI (1), Springer, Lecture Notes in Computer Science, vol 9712, pp 280–289

    Article  Google Scholar 

  210. King C, Pendlebury D (2013) Research fronts 2013: 100 top-ranked specialities in the sciences and social sciences. Thomson Reuters, New York p 32

    Google Scholar 

  211. Klau GW, Ljubic I, Moser A, Mutzel P, Neuner P, Pferschy U, Raidl GR, Weiskircher R (2004) Combining a memetic algorithm with integer programming to solve the prize-collecting Steiner tree problem. In: GECCO (1), Springer, Lecture Notes in Computer Science, vol 3102, pp 1304–1315

    Article  Google Scholar 

  212. Kóczy LT, Földesi P, Tuu-Szabo B (2016) A discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. In: [2], pp 3261–3267, URL https://doi.org/10.1109/CEC.2016.7744202

  213. Kóczy LT, Földesi P, Tuu-Szabo B (2017) An effective discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. Int J Intell Syst 32(8):862–876, URL https://doi.org/10.1002/int.21893

    Article  Google Scholar 

  214. Kóczy LT, Földesi P, Tüű-Szabó B (2017) Enhanced discrete bacterial memetic evolutionary algorithm-An efficacious metaheuristic for the traveling salesman optimization. Information Sciences URL https://www.sciencedirect.com/science/article/pii/S0020025517309866

  215. Kononova AV, Hughes KJ, Pourkashanian M, Ingham DB (2007) Fitness diversity based adaptive memetic algorithm for solving inverse problems of chemical kinetics. In: IEEE Congress on Evolutionary Computation, IEEE, pp 2366–2373

    Google Scholar 

  216. Kotiloglu S, Lappas T, Pelechrinis K, Repoussis P (2017) Personalized multi-period tour recommendations. Tourism Management 62:76–88, URLs https://doi.org/10.1016/j.tourman.2017.03.005, https://www.sciencedirect.com/science/article/pii/S0261517717300572

    Article  Google Scholar 

  217. Kowol M, Pietak K, Kisiel-Dorohinicki M, Byrski A (2017) Agent-based evolutionary and memetic black-box discrete optimization. Procedia Computer Science 108:907–916, URLs https://doi.org/10.1016/j.procs.2017.05.173, http://www.sciencedirect.com/science/article/pii/S1877050917307573, international Conference on Computational Science, ICCS 2017, 12–14 June 2017, Zurich, Switzerland

    Article  Google Scholar 

  218. Krasnogor N (2012) Memetic algorithms. In: Rozenberg G, Bäck T, Kok JN (eds) Handbook of Natural Computing, Springer, pp 905–935, URL https://doi.org/10.1007/978-3-540-92910-9_29

    Chapter  Google Scholar 

  219. Krasnogor N, Smith J (2000) A memetic algorithm with self-adaptive local search: TSP as a case study. In: GECCO, Morgan Kaufmann, pp 987–994

    Google Scholar 

  220. Kurdi M (2017) An improved island model memetic algorithm with a new cooperation phase for multi-objective job shop scheduling problem. Computers & Industrial Engineering 111:183–201, URLs https://doi.org/10.1016/j.cie.2017.07.021, http://www.sciencedirect.com/science/article/pii/S0360835217303236

    Article  Google Scholar 

  221. Kyriacou S, Sarma P, Hunt I, et al (2017) Constrained, multi-objective, steamflood injection redistribution optimization, using a cloud-distributed, metamodel-assisted, memetic optimization algorithm. In: SPE Reservoir Characterisation and Simulation Conference and Exhibition, Society of Petroleum Engineers, URL https://www.onepetro.org/conference-paper/SPE-186010-MS

  222. Lai X, Hao J (2016) A tabu search based memetic algorithm for the max-mean dispersion problem. Computers & OR 72:118–127

    Article  MATH  Google Scholar 

  223. Lamos-Díaz H, Aguilar-Imitola K, Pérez-Díaz YT, Galván-Núñez S (2017) A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem. Revista Facultad de Ingeniería 26(44):111

    Article  Google Scholar 

  224. Lancia G, Mathieson L, Moscato P (2017) Separating sets of strings by finding matching patterns is almost always hard. Theor Comput Sci 665:73–86, URL https://doi.org/10.1016/j.tcs.2016.12.018

    Article  MathSciNet  MATH  Google Scholar 

  225. Lee DC (2017) Filtering, smoothing, memetic algorithms, and feasible direction methods for estimating system state and unknown parameters of electromechanical motion devices. US Patent App. 15/360,995

    Google Scholar 

  226. Lei Y, Gong M, Jiao L, Zuo Y (2015) A memetic algorithm based on hyper-heuristics for examination timetabling problems. Int J Intelligent Computing and Cybernetics 8(2):139–151, URL https://doi.org/10.1108/IJICC-02-2015-0005

    Article  Google Scholar 

  227. Lei Y, Gong M, Jiao L, Shi J, Zhou Y (2017) An adaptive coevolutionary memetic algorithm for examination timetabling problems. IJBIC 10(4):248–257

    Article  Google Scholar 

  228. Lei Y, Shi J, Yan Z (2018) A memetic algorithm based on MOEA/D for the examination timetabling problem. Soft Computing 22(5):1511–1523

    Article  Google Scholar 

  229. Leite N, Fernandes CM, Melício F, Rosa AC (2018) A cellular memetic algorithm for the examination timetabling problem. Computers & Operations Research 94:118–138

    Article  MathSciNet  MATH  Google Scholar 

  230. Li D, Pan Z, Hu G, Zhu Z, He S (2017) Active module identification in intracellular networks using a memetic algorithm with a new binary decoding scheme. BMC Genomics 18(2):209, URL https://doi.org/10.1186/s12864-017-3495-y

  231. Li H, Wang L, Hei X, Li W, Jiang Q (2018) A decomposition-based chemical reaction optimization for multi-objective vehicle routing problem for simultaneous delivery and pickup with time windows. Memetic Computing 10(1):103–120

    Article  Google Scholar 

  232. Li M, Liu J (2018) A link clustering based memetic algorithm for overlapping community detection. Physica A: Statistical Mechanics and its Applications 503:410–423, URL http://www.sciencedirect.com/science/article/pii/S037843711830253X

    Article  Google Scholar 

  233. Li X, Ma S (2016) Multi-objective memetic search algorithm for multi-objective permutation flow shop scheduling problem. IEEE Access 4:2154–2165

    Article  Google Scholar 

  234. Li Y, Liu J, Liu C (2014) A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks. Soft Comput 18(2):329–348

    Article  Google Scholar 

  235. Liao CC, Ting CK (2018) A novel integer-coded memetic algorithm for the set k-cover problem in wireless sensor networks. IEEE Transactions on Cybernetics pp 1–14, https://doi.org/10.1109/TCYB.2017.2731598

  236. Lim M, Gustafson SM, Krasnogor N, Ong Y (2009) Editorial to the first issue. Memetic Computing 1(1):1–2, URL https://doi.org/10.1007/s12293-009-0007-x

    Article  Google Scholar 

  237. de Lima Corrêa L, Borguesan B, Krause MJ, Dorn M (2018) Three-dimensional protein structure prediction based on memetic algorithms. Computers & Operations Research 91:160–177, URL https://www.sciencedirect.com/science/article/pii/S0305054817302897

  238. Lin CC, Deng DJ, Wu JC, Lu LY (2018) Detecting hierarchical and overlapping community structures in social networks using a one-stage memetic algorithm. In: Li B, Shu L, Zeng D (eds) Communications and Networking, Springer International Publishing, Cham, pp 182–188

    Chapter  Google Scholar 

  239. Lin G, Zhu W, Ali MM (2016) An effective hybrid memetic algorithm for the minimum weight dominating set problem. IEEE Trans Evolutionary Computation 20(6):892–907

    Article  Google Scholar 

  240. Lin G, Guan J, Feng H (2018) An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks. Physica A: Statistical Mechanics and its Applications 500:199–209, URLs https://doi.org/10.1016/j.physa.2018.02.119, http://www.sciencedirect.com/science/article/pii/S0378437118302218

    Article  MathSciNet  Google Scholar 

  241. Liu F, Wang S, Hong Y, Yue X (2017) On the Robust and Stable Flowshop Scheduling Under Stochastic and Dynamic Disruptions. IEEE Transactions on Engineering Management 64(4):539–553, URL https://doi.org/10.1109/TEM.2017.2712611

    Article  Google Scholar 

  242. Liu K, Feng L, Dai P, Lee VCS, Son SH, Cao J (2017) Coding-Assisted Broadcast Scheduling via Memetic Computing in SDN-Based Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems pp 1–12, https://doi.org/10.1109/TITS.2017.2748381

    Article  Google Scholar 

  243. Liu K, Feng L, Dai P, Wu W, Lee VCS, Son SH (2017) A memetic algorithm for cache-aided data broadcast with network coding in vehicular networks. In: GLOBECOM 2017–2017 IEEE Global Communications Conference, pp 1–6, https://doi.org/10.1109/GLOCOM.2017.8254677

  244. Liu M, Singh HK, Ray T (2014) A memetic algorithm with a new split scheme for solving dynamic capacitated arc routing problems. In: IEEE Congress on Evolutionary Computation, IEEE, pp 595–602

    Google Scholar 

  245. Liu W, Gong M, Wang S, Ma L (2018) A two-level learning strategy based memetic algorithm for enhancing community robustness of networks. Information Sciences 422:290–304

    Article  Google Scholar 

  246. Liu Xp, Liu F, Wang Jj (2016) An enhanced memetic algorithm for combinational disruption management in sequence-dependent permutation flowshop. In: Huang DS, Bevilacqua V, Premaratne P (eds) Intelligent Computing Theories and Application: 12th International Conference, ICIC 2016, Lanzhou, China, August 2–5, 2016, Proceedings, Part I, Springer International Publishing, Cham, pp 548–559, URL https://doi.org/10.1007/978-3-319-42291-6_55

    Chapter  Google Scholar 

  247. Liu Y (2008) A memetic algorithm for the probabilistic traveling salesman problem. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1–6, 2008, Hong Kong, China, IEEE, pp 146–152, URL https://doi.org/10.1109/CEC.2008.4630790

  248. Ljubic I, Raidl GR (2003) A memetic algorithm for minimum-cost vertex-biconnectivity augmentation of graphs. J Heuristics 9(5):401–427

    Article  Google Scholar 

  249. Los M, Sawicki J, Smolka M, Schaefer R (2017) Memetic approach for irremediable ill-conditioned parametric inverse problems*. In: Koumoutsakos P, Lees M, Krzhizhanovskaya VV, Dongarra JJ, Sloot PMA (eds) International Conference on Computational Science, ICCS 2017, 12–14 June 2017, Zurich, Switzerland, Elsevier, Procedia Computer Science, vol 108, pp 867–876, URL https://doi.org/10.1016/j.procs.2017.05.007

    Article  Google Scholar 

  250. Loucera C, Iglesias A, Gálvez A (2017) Memetic simulated annealing for data approximation with local-support curves. In: ICCS, Elsevier, Procedia Computer Science, vol 108, pp 1364–1373

    Article  Google Scholar 

  251. Lozada CAC, Erazo C, Luna J, Mendoza M, Gaviria C, Arteaga C, Paz A (2016) Multi-objective memetic algorithm based on NSGA-II and simulated annealing for calibrating CORSIM micro-simulation models of vehicular traffic flow. In: CAEPIA, Springer, Lecture Notes in Computer Science, vol 9868, pp 468–476

    Article  Google Scholar 

  252. Lu Y, Benlic U, Wu Q (2018) A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints. European Journal of Operational Research 268(1):54–69

    Article  MathSciNet  MATH  Google Scholar 

  253. Lu Y, Benlic U, Wu Q (2018) A hybrid dynamic programming and memetic algorithm to the traveling salesman problem with hotel selection. Computers & Operations Research 90:193–207

    Article  MathSciNet  MATH  Google Scholar 

  254. Lü Z, Hao J (2010) A memetic algorithm for graph coloring. European Journal of Operational Research 203(1):241–250

    Article  MathSciNet  MATH  Google Scholar 

  255. Luo J, Yang Y, Liu Q, Li X, Chen M, Gao K (2018) A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization. Information Sciences 448:164–186

    Article  MathSciNet  Google Scholar 

  256. Lust T, Teghem J (2008) MEMOTS: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization. RAIRO - Operations Research 42(1):3–33

    Article  MathSciNet  MATH  Google Scholar 

  257. Ma A, Zhong Y, Zhang L (2014) Remote sensing imagery clustering using an adaptive bi-objective memetic method. In: IEEE Congress on Evolutionary Computation, IEEE, pp 50–57

    Google Scholar 

  258. Ma L, Gong M, Liu J, Cai Q, Jiao L (2014) Multi-level learning based memetic algorithm for community detection. Appl Soft Comput 19:121–133

    Article  Google Scholar 

  259. Ma L, Gong M, Yan J, Liu W, Wang S (2018) Detecting composite communities in multiplex networks: A multilevel memetic algorithm. Swarm and Evolutionary Computation 39:177–191, URLs https://doi.org/10.1016/j.swevo.2017.09.012, http://www.sciencedirect.com/science/article/pii/S2210650216305156

    Article  Google Scholar 

  260. Ma W, Zuo Y, Zeng J, Liang S, Jiao L (2014) A memetic algorithm for solving flexible job-shop scheduling problems. In: IEEE Congress on Evolutionary Computation, IEEE, pp 66–73

    Google Scholar 

  261. Majdouli MAE, Bougrine S, Rbouh I, Imrani AAE (2017) A comparative study of the EEG signals big optimization problem using evolutionary, swarm and memetic computation algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, GECCO ‘17, pp 1357–1364, URL http://doi.acm.org/10.1145/3067695.3082489

  262. Mandziuk J, Zychowski A (2016) A memetic approach to vehicle routing problem with dynamic requests. Appl Soft Comput 48:522–534

    Article  Google Scholar 

  263. Mandziuk J, Wozniczko A, Goss M (2014) A neuro-memetic system for music composing. In: AIAI, Springer, IFIP Advances in Information and Communication Technology, vol 436, pp 130–139

    Google Scholar 

  264. Maric M, Stanimirovic Z, Djenic A, Stanojevic P (2014) Memetic algorithm for solving the multilevel uncapacitated facility location problem. Informatica, Lith Acad Sci 25(3):439–466

    MATH  Google Scholar 

  265. Marinakis Y, Politis M, Marinaki M, Matsatsinis NF (2015) A memetic-grasp algorithm for the solution of the orienteering problem. In: MCO (2), Springer, Advances in Intelligent Systems and Computing, vol 360, pp 105–116

    Article  MATH  Google Scholar 

  266. Martínez LMS, Cobos CA, Corrales JC (2017) Memetic Algorithm Based on Global-Best Harmony Search and Hill Climbing for Part of Speech Tagging. In: International Conference on Mining Intelligence and Knowledge Exploration, Springer, Lecture Notes in Computer Science, vol 10682, pp 198–211

    Google Scholar 

  267. Matsui T, Katagiri Y, Katagiri H, Kato K (2015) Automatic feature point selection through hybrid metaheuristics based on tabu search and memetic algorithm for augmented reality. In: KES, Elsevier, Procedia Computer Science, vol 60, pp 1120–1127

    Article  Google Scholar 

  268. Mavrovouniotis M, Yang S (2011) A memetic ant colony optimization algorithm for the dynamic travelling salesman problem. Soft Comput 15(7):1405–1425, URL https://doi.org/10.1007/s00500-010-0680-1

    Article  Google Scholar 

  269. Mavrovouniotis M, Müller FM, Yang S (2015) An ant colony optimization based memetic algorithm for the dynamic travelling salesman problem. In: Silva S, Esparcia-Alcázar AI (eds) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11–15, 2015, ACM, pp 49–56, URL http://doi.acm.org/10.1145/2739480.2754651

  270. Mendes A, Franca P, Moscato P (2002) Fitness landscapes for the total tardiness single machine scheduling problem. Neural Network World 2(2):165–180

    Google Scholar 

  271. Mendes A, Cotta C, Garcia V, Franca P, Moscato P (2005) A new memetic algorithm for ordering datasets: Applications in microarray analysis. In: Proceedings of ICPP2005 - 34th International Conference on Parallel Processing, Oslo, Norway, pp 604–611

    Google Scholar 

  272. Mendes AS, Muller FM, Franca PM, Moscato P (2002) Comparing meta-heuristic approaches for parallel machine scheduling problems. Production Planning & Control 13(2):143–154, URL http://dx.doi.org/10.1080/09537280110069649

  273. Mendoza M, Lozada CAC, León-Guzmán E, Lozano M, Rodríguez FJ, Herrera-Viedma E (2014) A new memetic algorithm for multi-document summarization based on CHC algorithm and greedy search. In: MICAI (1), Springer, Lecture Notes in Computer Science, vol 8856, pp 125–138

    Article  Google Scholar 

  274. Meng Z, Pan J (2016) Monkey king evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowl-Based Syst 97:144–157

    Article  MathSciNet  Google Scholar 

  275. Merz P (2002) A comparison of memetic recombination operators for the traveling salesman problem. In: Langdon WB, Cantú-Paz E, Mathias KE, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke EK, Jonoska N (eds) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, USA, 9–13 July 2002, Morgan Kaufmann, pp 472–479

    Google Scholar 

  276. Merz P, Freisleben B (1998) Memetic algorithms and the fitness landscape of the graph bi-partitioning problem. In: PPSN, Springer, Lecture Notes in Computer Science, vol 1498, pp 765–774

    Article  Google Scholar 

  277. Merz P, Freisleben B (1999) Fitness landscapes and memetic algorithm design. In: Corne D, Dorigo M, Glover F (eds) New Ideas in Optimization, McGraw-Hill, pp 245–260

    Google Scholar 

  278. Merz P, Freisleben B (2000) Fitness landscapes, memetic algorithms, and greedy operators for graph bipartitioning. Evolutionary Computation 8(1):61–91

    Article  Google Scholar 

  279. Merz P, Freisleben B (2002) Memetic algorithms for the traveling salesman problem. Complex Systems 13(4), URL http://www.complex-systems.com/abstracts/v13_i04_a01.html

  280. Mirsaleh MR, Meybodi MR (2015) A learning automata-based memetic algorithm. Genetic Programming and Evolvable Machines 16(4):399–453

    Article  Google Scholar 

  281. Mirsaleh MR, Meybodi MR (2016) A Michigan memetic algorithm for solving the community detection problem in complex network. Neurocomputing 214:535–545

    Article  Google Scholar 

  282. Mirsaleh MR, Meybodi MR (2016) A new memetic algorithm based on cellular learning automata for solving the vertex coloring problem. Memetic Computing 8(3):211–222

    Article  Google Scholar 

  283. Mirsaleh MR, Meybodi MR (2018) Assignment of cells to switches in cellular mobile network: a learning automata-based memetic algorithm. Applied Intelligence URL https://link.springer.com/10.1007/s10489-018-1136-z

  284. Mirsaleh MR, Meybodi MR (2018) Balancing exploration and exploitation in memetic algorithms: A learning automata approach. Computational Intelligence 34(1):282–309

    Article  MathSciNet  Google Scholar 

  285. Mirsaleh MR, Meybodi MR (2018) A Michigan memetic algorithm for solving the vertex coloring problem. Journal of Computational Science 24:389 – 401, URLs https://doi.org/10.1016/j.jocs.2017.10.005, http://www.sciencedirect.com/science/article/pii/S1877750317301680

    Article  MathSciNet  Google Scholar 

  286. Mishra KK, Tripathi A, Tiwari S, Saxena N (2017) Evolution based memetic algorithm and its application in software cost estimation. Journal of Intelligent and Fuzzy Systems 32(3):2485–2498

    Article  Google Scholar 

  287. Mišković S (2017) Memetic Algorithm for the Uncapacitated Multiple Allocation p-Hub Center Problem. The IPSI BgD Transactions on Internet Research 13(1)

    Google Scholar 

  288. Moalic L, Gondran A (2015) The new memetic algorithm HEAD for graph coloring: An easy way for managing diversity. In: EvoCOP, Springer, Lecture Notes in Computer Science, vol 9026, pp 173–183

    Article  MathSciNet  Google Scholar 

  289. Moalic L, Gondran A (2018) Variations on memetic algorithms for graph coloring problems. J Heuristics 24(1):1–24

    Article  Google Scholar 

  290. Mohammadi S, Namadchian A (2017) A New Deep Learning Approach for Anomaly Base IDS using Memetic Classifier. International Journal of Computers, Communications & Control 12(5)

    Google Scholar 

  291. Mohammed TA, Sahmoud S, Bayat O (2017) Efficient hybrid memetic algorithm for multi-objective optimization problems. In: 2017 International Conference on Engineering and Technology (ICET), pp 1–6, https://doi.org/10.1109/ICEngTechnol.2017.8308178

  292. Moisi EV, Lukic T, Nagy B, Cretu V (2015) Comparing memetic and simulated annealing approaches for discrete tomography on the triangular grid. In: SACI, IEEE, pp 523–528

    Google Scholar 

  293. Molina D, Herrera F, Lozano M (2005) Adaptive local search parameters for real-coded memetic algorithms. In: Congress on Evolutionary Computation, IEEE, pp 888–895

    Google Scholar 

  294. Molina G, Alba E (2008) Wireless sensor network deployment using a memetic simulated annealing. In: SAINT, IEEE Computer Society, pp 237–240

    Google Scholar 

  295. Moll PP (2017) Construction and application of a memetic algorithm assigning catchment areas to retailers for consumer parcel flow. Master’s thesis, URL http://hdl.handle.net/2105/38120

  296. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts. towards memetic algorithms. Tech. Rep. Caltech Concurrent Computation Program, Tec. Rep. 826, California Institute of Technology, Pasadena, California, USA

    Google Scholar 

  297. Moscato P (1993) An introduction to population approaches for optimization and hierarchical objective functions: A discussion on the role of tabu search. Annals OR 41(2):85–121, URL https://doi.org/10.1007/BF02022564

    Article  MATH  Google Scholar 

  298. Moscato P (1999) Memetic algorithms: A short introduction. In: Corne D, Dorigo M, Glover F (eds) New Ideas in Optimization, McGraw-Hill, pp 219–234

    Google Scholar 

  299. Moscato P (2001) Problemas de otimizacão np, aproximabilidade e computacão evolutiva: da prática à teoria. PhD thesis, Departamento de Engenharia de Sistemas (DENSIS), Universidade de Campinas (UNICAMP), UNICAMP, an optional note

    Google Scholar 

  300. Moscato P (2012) Memetic algorithms: The untold story. In: Neri F, Cotta C, Moscato P (eds) Handbook of Memetic Algorithms, Studies in Computational Intelligence, vol 379, Springer, pp 275–309, URL https://doi.org/10.1007/978-3-642-23247-3_17

    Chapter  Google Scholar 

  301. Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Handbook of metaheuristics, Springer, pp 105–144

    Google Scholar 

  302. Moscato P, Cotta C (2007) Memetic algorithms. In: Gonzalez TF (ed) Handbook of Approximation Algorithms and Metaheuristics, Chapman & Hall/CRC, Boca Raton, pp 27–1–27–12, URL https://doi.org/10.1201/9781420010749.ch27

    Google Scholar 

  303. Moscato P, Cotta C (2010) A modern introduction to memetic algorithms. In: Gendreau M, Potvin JY (eds) Handbook of Metaheuristics, Springer US, Boston, MA, pp 141–183, URL https://doi.org/10.1007/978-1-4419-1665-5_6

    Chapter  Google Scholar 

  304. Moscato P, Fontanari J (1990) Stochastic versus deterministic update in simulated annealing. Physics Letters A 146(4):204–208, URLs http://dx.doi.org/10.1016/0375-9601(90)90166-L, http://www.sciencedirect.com/science/article/pii/037596019090166L

    Article  Google Scholar 

  305. Moscato P, Norman MG (1992) A “memetic” approach for the travelling salesman problem: Implementation of a computational ecology for combinatorial optimization on message-passing systems. In: Valero M, Onate E, Jane M, Larriba JL, Suarez B (eds) Proceedings of PACTA ‘92 - International Conference on Parallel Computing and Transputer Applications, Sep. 21–25, Barcelona, IOS Press, Amsterdam, pp 177–186

    Google Scholar 

  306. Moscato P, Norman MG (1998) On the performance of heuristics on finite and infinite fractal instances of the Euclidean traveling salesman problem. INFORMS Journal on Computing 10(2):121–132, URL https://doi.org/10.1287/ijoc.10.2.121

    Article  MathSciNet  MATH  Google Scholar 

  307. Moscato P, Tinetti F (1992) Blending heuristics with a population-based approach: A memetic algorithm for the traveling salesman problem. Report 92–12, Universidad Nacional de La Plata, C.C. 75, 1900 La Plata, Argentina

    Google Scholar 

  308. Moscato P, Cotta C, Mendes A (2004) Memetic algorithms. In: Onwubolu G, Babu B (eds) New Optimization Techniques in Engineering, Studies in Fuzziness and Soft Computing, vol 141, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 53–85

    Chapter  Google Scholar 

  309. Moscato P, Mendes A, Cotta C (2004) Scheduling and production & control: Ma. In: Onwubolu G, Babu B (eds) New Optimization Techniques in Engineering, Studies in Fuzziness and Soft Computing, vol 141, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 655–680

    Chapter  MATH  Google Scholar 

  310. Moscato P, Mendes A, Linhares A (2004) VLSI design: gate matrix layout problem. In: Onwubolu G, Babu B (eds) New Optimization Techniques in Engineering, Studies in Fuzziness and Soft Computing, vol 141, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 455–478

    Chapter  Google Scholar 

  311. Moscato P, Berretta R, Mendes A (2005) A new memetic algorithm for ordering datasets: Applications in microarray analysis. In: Proceedings of MIC2005 - The 6th Metaheuristics International Conference, Vienna, Austria, pp 695–700

    Google Scholar 

  312. Moscato P, Mendes A, Berretta R (2007) Benchmarking a memetic algorithm for ordering microarray data. Biosystems 88(1–2):56–75, URL https://doi.org/10.1016/j.biosystems.2006.04.005

    Article  Google Scholar 

  313. Moscato P, Berretta R, Cotta C (2010) Memetic algorithms. In: Cochran JJ, Cox LA, Keskinocak P, Kharoufeh JP, Smith JC (eds) Wiley Encyclopedia of Operations Research and Management Science, John Wiley & Sons, Inc., URL http://dx.doi.org/10.1002/9780470400531.eorms0515

    Google Scholar 

  314. Mu C, Xie J, Liu R, Jiao L (2014) A memetic algorithm using local structural information for detecting community structure in complex networks. In: IEEE Congress on Evolutionary Computation, IEEE, pp 680–686

    Google Scholar 

  315. Mu C, Xie J, Liu Y, Chen F, Liu Y, Jiao L (2015) Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks. Appl Soft Comput 34:485–501

    Article  Google Scholar 

  316. Naeni LM, de Vries NJ, Reis R, Arefin AS, Berretta R, Moscato P (2014) Identifying communities of trust and confidence in the charity and not-for-profit sector: A memetic algorithm approach. In: BDCloud, IEEE Computer Society, pp 500–507

    Google Scholar 

  317. Naeni LM, Craig H, Berretta R, Moscato P (2016) A novel clustering methodology based on modularity optimisation for detecting authorship affinities in Shakespearean era plays. PLOS ONE 11(8):1–27, URL https://doi.org/10.1371/journal.pone.0157988

    Article  Google Scholar 

  318. Nalepa J, Blocho M (2016) Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput 20(6):2309–2327

    Article  Google Scholar 

  319. Nalepa J, Blocho M (2017) A Parallel Memetic Algorithm for the Pickup and Delivery Problem with Time Windows. In: PDP, IEEE, pp 1–8

    Google Scholar 

  320. Nalepa J, Kawulok M (2016) Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185:113–132

    Article  Google Scholar 

  321. Nalepa J, Cwiek M, Zak L (2018) Behind the scenes of deadline24: A memetic algorithm for the modified job shop scheduling problem. In: Gruca A, Czachórski T, Harezlak K, Kozielski S, Piotrowska A (eds) Man-Machine Interactions 5, Springer International Publishing, Cham, pp 502–512

    Chapter  Google Scholar 

  322. Naveen N, Rao MC (2016) Bankruptcy prediction using memetic algorithm. In: MIWAI, Springer, Lecture Notes in Computer Science, vol 10053, pp 153–161

    Article  Google Scholar 

  323. Neri F (2012) Diversity Management in Memetic Algorithms, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 153–165. URL https://doi.org/10.1007/978-3-642-23247-3_10

    Chapter  Google Scholar 

  324. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation 2:1–14, URL https://doi.org/10.1016/j.swevo.2011.11.003

    Article  Google Scholar 

  325. Neri F, Kotilainen N, Vapa M (2007) An adaptive global-local memetic algorithm to discover resources in P2P networks. In: EvoWorkshops, Springer, Lecture Notes in Computer Science, vol 4448, pp 61–70

    Article  MATH  Google Scholar 

  326. Neri F, Cotta C, Moscato P (eds) (2012) Handbook of Memetic Algorithms, Studies in Computational Intelligence, vol 379. Springer, URL https://doi.org/10.1007/978-3-642-23247-3

    Google Scholar 

  327. Neto JC, Colanzi TE, Amaral AMMM (2017) Application of memetic algorithms in the search-based product line architecture design: An exploratory study. In: ICEIS (2), SciTePress, pp 178–189

    Google Scholar 

  328. Nguyen ML, Hui SC, Fong ACM (2017) Submodular memetic approximation for multiobjective parallel test paper generation. IEEE Trans Cybernetics 47(6):1562–1575

    Article  Google Scholar 

  329. Nguyen PTH, Sudholt D (2018) Memetic Algorithms Beat Evolutionary Algorithms on the Class of Hurdle Problems. ArXiv e-prints 1804.06173

    Google Scholar 

  330. Nguyen QH, Ong Y, Lim M, Krasnogor N (2009) Adaptive cellular memetic algorithms. Evolutionary Computation 17(2):231–256

    Article  Google Scholar 

  331. Ni J, Wang K, Cao Q, Khan Z, Fan X (2017) A memetic algorithm with variable length chromosome for robot path planning under dynamic environments. International Journal of Robotics and Automation 32(4), URL http://www.actapress.com/PDFViewer.aspx?paperId=45632

  332. Nogueras R, Cotta C (2015) Studying fault-tolerance in island-based evolutionary and multimemetic algorithms. J Grid Comput 13(3):351–374, URL https://doi.org/10.1007/s10723-014-9315-6

    Article  Google Scholar 

  333. Nogueras R, Cotta C (2016) A study of the performance of self-⋆  memetic algorithms on heterogeneous ephemeral environments. In: Handl J, Hart E, Lewis PR, López-Ibáñez M, Ochoa G, Paechter B (eds) Parallel Problem Solving from Nature - PPSN XIV - 14th International Conference, Edinburgh, UK, September 17–21, 2016, Proceedings, Springer, Lecture Notes in Computer Science, vol 9921, pp 91–100, URL https://doi.org/10.1007/978-3-319-45823-6_9

    Chapter  Google Scholar 

  334. Nogueras R, Cotta C (2016) Studying self-balancing strategies in island-based multimemetic algorithms. J Computational Applied Mathematics 293:180–191, URL https://doi.org/10.1016/j.cam.2015.03.047

    Article  MathSciNet  MATH  Google Scholar 

  335. Nogueras R, Cotta C (2017) Self-healing strategies for memetic algorithms in unstable and ephemeral computational environments. Natural Computing 16(2):189–200, URL https://doi.org/10.1007/s11047-016-9560-7

    Article  MathSciNet  Google Scholar 

  336. Norman M, Moscato P (1989) A competitive and cooperative approach to complex combinatorial search. Tech. Rep. Caltech Concurrent Computation Program, Report. 790, California Institute of Technology, Pasadena, California, USA, expanded version published at the 20th Informatics and Operations Research Meeting, Buenos Aires (20th JAIIO), Aug. 1991, pp. 3.15–3.29

    Google Scholar 

  337. Norman MG, Moscato P (1995) The Euclidean traveling salesman problem and a space-filling curve. Chaos, Solitons & Fractals 6:389–397, URLs http://dx.doi.org/10.1016/0960-0779(95)80046-J, http://www.sciencedirect.com/science/article/pii/096007799580046J, complex Systems in Computational Physics

  338. Ochoa G, Veerapen N, Whitley D, Burke EK (2015) The multi-funnel structure of TSP fitness landscapes: A visual exploration. In: Bonnevay S, Legrand P, Monmarché N, Lutton E, Schoenauer M (eds) Artificial Evolution - 12th International Conference, Evolution Artificielle, EA 2015, Lyon, France, October 26–28, 2015. Revised Selected Papers, Springer, Lecture Notes in Computer Science, vol 9554, pp 1–13, URL https://doi.org/10.1007/978-3-319-31471-6_1

    Google Scholar 

  339. Okonji EA, Oluwatoyin YM, Patricia OI (2017) Intelligence classification of the timetable problem: A memetic approach. International Journal on Data Science and Technology 3(2):24

    Article  Google Scholar 

  340. Ong Y, Lim M, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Systems, Man, and Cybernetics, Part B 36(1):141–152

    Article  Google Scholar 

  341. Ong Y, Krasnogor N, Ishibuchi H (2007) Special issue on memetic algorithms. IEEE Trans Systems, Man, and Cybernetics, Part B 37(1):2–5, URL https://doi.org/10.1109/TSMCB.2006.883274

    Article  Google Scholar 

  342. Ong Y, Lim M, Neri F, Ishibuchi H (2009) Special issue on emerging trends in soft computing: memetic algorithms. Soft Comput 13(8–9):739–740, URL https://doi.org/10.1007/s00500-008-0353-5

    Article  Google Scholar 

  343. Ong Y, Lim M, Chen X (2010) Memetic computation - past, present & future [research frontier]. IEEE Comp Int Mag 5(2):24–31, URL https://doi.org/10.1109/MCI.2010.936309

    Article  Google Scholar 

  344. Orito Y, Izawa H, Mardyla G, Okamura M (2017) Consumption loan planning by using memetic algorithm. In: Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, ACM, New York, NY, USA, ISMSI ‘17, pp 6–10, URL http://doi.acm.org/10.1145/3059336.3059343

  345. Osaba E, Díaz F (2012) Comparison of a memetic algorithm and a tabu search algorithm for the traveling salesman problem. In: FedCSIS, pp 131–136

    Google Scholar 

  346. Özcan E, Parkes AJ, Alkan A (2012) The interleaved constructive memetic algorithm and its application to timetabling. Computers & OR 39(10):2310–2322, URL https://doi.org/10.1016/j.cor.2011.11.020

    Article  Google Scholar 

  347. Özcan E, Drake JH, Altintas C, Asta S (2016) A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings. Appl Soft Comput 49:81–93

    Article  Google Scholar 

  348. Paechter B, Cumming A, Norman MG, Luchian H (1995) Extensions to a memetic timetabling system. In: [62], pp 251–265, URL https://doi.org/10.1007/3-540-61794-9_64

    Chapter  Google Scholar 

  349. Palacios JJ, Vela CR, González-Rodríguez I, Puente J (2017) A memetic algorithm for due-date satisfaction in fuzzy job shop scheduling. In: Ferrández Vicente JM, Álvarez-Sánchez JR, de la Paz López F, Toledo Moreo J, Adeli H (eds) Natural and Artificial Computation for Biomedicine and Neuroscience, Springer International Publishing, pp 135–145

    Google Scholar 

  350. Palacios JJ, Vela CR, Rodríguez IG, Puente J (2017) A memetic algorithm for due-date satisfaction in fuzzy job shop scheduling. In: IWINAC (1), Springer, Lecture Notes in Computer Science, vol 10337, pp 135–145

    Article  Google Scholar 

  351. Palar PS, Tsuchiya T, Parks GT (2015) Comparison of scalarization functions within a local surrogate assisted multi-objective memetic algorithm framework for expensive problems. In: CEC, IEEE, pp 862–869

    Google Scholar 

  352. Palar PS, Dwianto YB, Zuhal LR, Tsuchiya T (2016) Framework for robust optimization combining surrogate model, memetic algorithm, and uncertainty quantification. In: ICSI (1), Springer, Lecture Notes in Computer Science, vol 9712, pp 48–55

    Article  Google Scholar 

  353. Palar PS, Tsuchiya T, Parks GT (2016) A comparative study of local search within a surrogate-assisted multi-objective memetic algorithm framework for expensive problems. Appl Soft Comput 43:1–19

    Article  Google Scholar 

  354. Panteleev AV, Pis’mennaya VA (2018) Application of a Memetic Algorithm for the Optimal Control of Bunches of Trajectories of Nonlinear Deterministic Systems with Incomplete Feedback. Journal of Computer and Systems Sciences International 57(1):25–36, URL https://link.springer.com/article/10.1134/S1064230718010082

    Article  MathSciNet  MATH  Google Scholar 

  355. Parsa NR, Karimi B, Husseini SMM (2017) An improved memetic algorithm to minimize the earliness–tardiness on a single batch processing machine. Journal of Industrial and Systems Engineering URL https://pdfs.semanticscholar.org/2342/25753bc213e96f7b71a990ee1299f005ea30.pdf

  356. Patil S, Kulkarni S (2018) Mining social media data for understanding students’ learning experiences using memetic algorithm. Materials Today: Proceedings 5(1, Part 1):693–699, URL http://www.sciencedirect.com/science/article/pii/S2214785317323817, international Conference on Processing of Materials, Minerals and Energy (July 29th–30th) 2016, Ongole, Andhra Pradesh, India

  357. Pecháč P, Sága M (2017) Memetic Algorithm with Normalized RBF ANN for Approximation of Objective Function and Secondary RBF ANN for Error Mapping. Procedia Engineering 177:540–547, URLs https://doi.org/10.1016/j.proeng.2017.02.258, http://www.sciencedirect.com/science/article/pii/S187770581730766X, xXI Polish-Slovak Scientific Conference Machine Modeling and Simulations MMS 2016.September 6–8, 2016, Hucisko, Poland

    Article  Google Scholar 

  358. Pecháč P, Sága M, Weis P (2017) Feasibility study of using artificial neural networks for approximation of n-dimensional objective functions in memetic algorithms for structural optimization. Procedia Engineering 192:671–676, URLs https://doi.org/10.1016/j.proeng.2017.06.116, http://www.sciencedirect.com/science/article/pii/S1877705817326620, 12th international scientific conference of young scientists on sustainable, modern and safe transport

    Article  Google Scholar 

  359. Pelaez JI, Gomez-Ruiz JA, Veintimilla J, Vaccaro G, Witt P (2017) Memetic computing applied to the design of composite materials and structures. Mathematical Problems in Engineering 2017

    Google Scholar 

  360. Peng-jiao Z, Jian-guo L (2017) Deployment optimization of air defense force deployment based on memetic algorithm. In: 2017 29th Chinese Control And Decision Conference (CCDC), pp 5538–5543, https://doi.org/10.1109/CCDC.2017.7979481

  361. Peres W, Silva VV, Coelho FC, Junior ICS, Filho JAP (2018) A memetic algorithm for power system damping controllers design. International Journal of Bio-Inspired Computation 11(2):110–122

    Article  Google Scholar 

  362. Phan DH, Suzuki J (2014) R2 indicator based multiobjective memetic optimization for the pickup and delivery problem with time windows and demands (PDP-TW-D). In: BICT, ICST

    Google Scholar 

  363. Phu-ang A, Thammano A (2017) Memetic algorithm based on marriage in honey bees optimization for flexible job shop scheduling problem. Memetic Computing 9(4):295–309, URL https://doi.org/10.1007/s12293-017-0230-9

    Article  Google Scholar 

  364. Pilát M, Neruda R (2011) ASM-MOMA: multiobjective memetic algorithm with aggregate surrogate model. In: IEEE Congress on Evolutionary Computation, IEEE, pp 1202–1208

    Google Scholar 

  365. Piwonska A, Koszelew J (2011) A memetic algorithm for a tour planning in the selective travelling salesman problem on a road network. In: Kryszkiewicz M, Rybinski H, Skowron A, Ras ZW (eds) Foundations of Intelligent Systems - 19th International Symposium, ISMIS 2011, Warsaw, Poland, June 28–30, 2011. Proceedings, Springer, Lecture Notes in Computer Science, vol 6804, pp 684–694, URL https://doi.org/10.1007/978-3-642-21916-0_72

    Google Scholar 

  366. Pop PC, Hu B, Raidl GR (2013) A memetic algorithm with two distinct solution representations for the partition graph coloring problem. In: EUROCAST (1), Springer, Lecture Notes in Computer Science, vol 8111, pp 219–226

    Article  Google Scholar 

  367. Pourrahimian P (2017) A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem. Journal of Industrial Engineering International, URL https://doi.org/10.1007/s40092-017-0247-1

    Article  Google Scholar 

  368. Qi Y, Hou Z, Li H, Huang J, Li X (2015) A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows. Computers & OR 62:61–77

    Article  MathSciNet  MATH  Google Scholar 

  369. Qin Y, Liu J (2017) Emergency materials scheduling in disaster relief based on a memetic algorithm. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ESM (eds) Neural Information Processing, Springer International Publishing, Cham, pp 279–287

    Chapter  Google Scholar 

  370. Qu X, Zhao W, Feng X, Bai L, Liu B (2018) An improved memetic algorithm with novel level comparison for constrained optimization. In: Xhafa F, Patnaik S, Zomaya AY (eds) Advances in Intelligent Systems and Interactive Applications, Springer International Publishing, Cham, pp 698–704

    Chapter  Google Scholar 

  371. Rakshit P, Banerjee D, Konar A, Janarthanan R (2012) An adaptive memetic algorithm for multi-robot path-planning. In: SEMCCO, Springer, Lecture Notes in Computer Science, vol 7677, pp 248–258

    Article  Google Scholar 

  372. Rakshit P, Konar A, Bhowmik P, Goswami I, Das S, Jain LC, Nagar AK (2013) Realization of an adaptive memetic algorithm using differential evolution and q-learning: A case study in multirobot path planning. IEEE Trans Systems, Man, and Cybernetics: Systems 43(4):814–831

    Article  Google Scholar 

  373. Rakshit P, Konar A, Das S, Nagar AK (2013) ABC-TDQL: an adaptive memetic algorithm. In: HIMA, IEEE, pp 35–42

    Google Scholar 

  374. Ramadan RM, Gasser SM, El-Mahallawy MS, Hammad K, El Bakly AM (2018) A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks. PLOS ONE 13(3):1–17, URL https://doi.org/10.1371/journal.pone.0193142

    Article  Google Scholar 

  375. Ramezani Z, Pourdarvish A, Garmabaki A, Kapur P (2017) Optimal reliability equivalence factor for reliability system improvement using memetic algorithm. International Journal of Reliability, Quality and Safety Engineering 24(06):1740,008

    Article  Google Scholar 

  376. Ramírez A, Barbudo R, Romero JR, Ventura S (2016) Memetic algorithms for the automatic discovery of software architectures. In: ISDA, Springer, Advances in Intelligent Systems and Computing, vol 557, pp 437–447

    Article  Google Scholar 

  377. Ramírez A, Barbudo R, Romero JR, Ventura S (2017) Memetic algorithms for the automatic discovery of software architectures. In: Madureira AM, Abraham A, Gamboa D, Novais P (eds) Intelligent Systems Design and Applications, Springer International Publishing, Cham, pp 437–447

    Chapter  Google Scholar 

  378. Rezgui D, Siala JC, Aggoune-Mtalaa W, Bouziri H (2017) Application of a memetic algorithm to the fleet size and mix vehicle routing problem with electric modular vehicles. In: [57], pp 301–302, URL http://doi.acm.org/10.1145/3067695.3075608

  379. Rezoug A, Bader-El-Den M, Boughaci D (2018) Guided genetic algorithm for the multidimensional knapsack problem. Memetic Computing 10(1):29–42

    Article  Google Scholar 

  380. Rincy N (2017) Memetic Computing using Simulated Annealing for Dynamic Vehicle Routing Protocol. International Journal of Scientific Research in Science, Engineering and Technology 3, URL https://pdfs.semanticscholar.org/4a2e/b7e845ccd7d9631d211bedf52f23675cd9ff.pdf

  381. Rizzi R, Mahata P, Mathieson L, Moscato P (2010) Hierarchical clustering using the arithmetic-harmonic cut: Complexity and experiments. PLOS ONE 5(12):1–8, URL https://doi.org/10.1371/journal.pone.0014067

    Article  Google Scholar 

  382. Rodríguez CDR, Gomez DM, Rey MAM (2017) Forecasting time series from clustering by a memetic differential fuzzy approach: An application to crime prediction. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–8, https://doi.org/10.1109/SSCI.2017.8285373

  383. Rogdakis I, Marinaki M, Marinakis Y, Migdalas A (2017) An island memetic algorithm for real world vehicle routing problems. In: Grigoroudis E, Doumpos M (eds) Operational Research in Business and Economics, Springer International Publishing, Cham, pp 205–223

    Chapter  Google Scholar 

  384. Ruiz-Torrubiano R, Suárez A (2015) A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Appl Soft Comput 36:125–142

    Article  Google Scholar 

  385. Sabar NR, Aleti A (2017) An adaptive memetic algorithm for the architecture optimisation problem. In: ACALCI, Lecture Notes in Computer Science, vol 10142, pp 254–265

    Article  Google Scholar 

  386. Sabar NR, Turky AM, Song A (2016) A multi-memory multi-population memetic algorithm for dynamic shortest path routing in mobile ad-hoc networks. In: PRICAI, Springer, Lecture Notes in Computer Science, vol 9810, pp 406–418

    Article  Google Scholar 

  387. Sabar NR, Abawajy J, Yearwood J (2017) Heterogeneous cooperative co-evolution memetic differential evolution algorithm for big data optimization problems. IEEE Trans Evolutionary Computation 21(2):315–327

    Article  Google Scholar 

  388. Sabar NR, Kieu LM, Chung E, Tsubota T, de Almeida PEM (2017) A memetic algorithm for real world multi-intersection traffic signal optimisation problems. Engineering Applications of Artificial Intelligence 63:45–53, URLs https://doi.org/10.1016/j.engappai.2017.04.021, http://www.sciencedirect.com/science/article/pii/S0952197617300854

    Article  Google Scholar 

  389. Sait SM, Oughali FC, Arafeh AM (2016) Engineering a memetic algorithm from discrete cuckoo search and tabu search for cell assignment of hybrid nanoscale CMOL circuits. Journal of Circuits, Systems, and Computers 25(4)

    Article  Google Scholar 

  390. Sales LdPA, Melo CS, Bonates TdOe, Prata BdA (2018) Memetic algorithm for the heterogeneous fleet school bus routing problem. Journal of Urban Planning and Development 144(2):04018,018

    Article  Google Scholar 

  391. Salvini C, Monacchia S (2017) A memetic computing approach for unit commitment with energy storage systems. Energy Procedia 107:377–382, URLs https://doi.org/10.1016/j.egypro.2016.12.179, http://www.sciencedirect.com/science/article/pii/S1876610216317684, 3rd International Conference on Energy and Environment Research, ICEER 2016, 7–11 September 2016, Barcelona, Spain

    Article  Google Scholar 

  392. Samanlioglu F, Jr WGF, Kurz ME (2008) A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem. Computers & Industrial Engineering 55(2):439–449, URL https://doi.org/10.1016/j.cie.2008.01.005

    Article  Google Scholar 

  393. Samma H, Lim CP, Mohamad-Saleh J (2016) A new reinforcement learning-based memetic particle swarm optimizer. Appl Soft Comput 43:276–297

    Article  Google Scholar 

  394. Sangamithra B, Neelima P, Kumar MS (2017) A memetic algorithm for multi objective vehicle routing problem with time windows. In: 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), pp 1–8, https://doi.org/10.1109/ICEICE.2017.8191931

  395. Sanhueza C, Jimenez F, Berretta R, Moscato P (2017) PasMoQAP: A parallel asynchronous memetic algorithm for solving the multi-objective quadratic assignment problem. In: [3], pp 1103–1110, URL https://doi.org/10.1109/CEC.2017.7969430

  396. Santos A, Santos R, Silva M, Figueiredo E, Sales C, Costa JCWA (2017) A global expectation–maximization approach based on memetic algorithm for vibration-based structural damage detection. IEEE Transactions on Instrumentation and Measurement 66(4):661–670, https://doi.org/10.1109/TIM.2017.2663478

    Article  Google Scholar 

  397. Saprykina O, Saprykin O (2017) Transport infrastructure optimization method based on a memetic algorithm. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp 1–6, https://doi.org/10.1109/ITSC.2017.8317869

  398. Sasikala S, alias Balamurugan SA, Geetha S (2016) A novel memetic algorithm for discovering knowledge in binary and multi class predictions based on support vector machine. Appl Soft Comput 49:407–422

    Article  Google Scholar 

  399. Schauer C, Raidl GR (2014) A memetic algorithm for multi layer hierarchical ring network design. In: PPSN, Springer, Lecture Notes in Computer Science, vol 8672, pp 832–841

    Article  Google Scholar 

  400. Schauer C, Prandtstetter M, Raidl GR (2010) A memetic algorithm for reconstructing cross-cut shredded text documents. In: Blesa MJ, Blum C, Raidl GR, Roli A, Sampels M (eds) Hybrid Metaheuristics - 7th International Workshop, HM 2010, Vienna, Austria, October 1–2, 2010. Proceedings, Springer, Lecture Notes in Computer Science, vol 6373, pp 103–117, URL https://doi.org/10.1007/978-3-642-16054-7_8

    Chapter  Google Scholar 

  401. Schmickl T (2017) Fundamentalism in a social learning perspective: A memetic agent model of vegetarianism, social interaction networks and food markets. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–8, https://doi.org/10.1109/SSCI.2017.8280876

  402. Schoenberger J (2017) Scheduling constraints in dial-a-ride problems with transfers: a metaheuristic approach incorporating a cross-route scheduling procedure with postponement opportunities. Public Transport 9(1–2, SI):243–272, URL https://doi.org/10.1007/s12469-016-0139-6

    Article  Google Scholar 

  403. Schönberger J, Mattfeld DC, Kopfer H (2004) Memetic algorithm timetabling for non-commercial sport leagues. European Journal of Operational Research 153(1):102–116, URL https://doi.org/10.1016/S0377-2217(03)00102-4

    Article  MathSciNet  MATH  Google Scholar 

  404. Schütze O, Alvarado S, Segura C, Landa R (2017) Gradient subspace approximation: a direct search method for memetic computing. Soft Computing 21(21):6331–6350, URL https://doi.org/10.1007/s00500-016-2187-x

    Article  MATH  Google Scholar 

  405. Segredo E, Segura C, León C (2014) Fuzzy logic-controlled diversity-based multi-objective memetic algorithm applied to a frequency assignment problem. Eng Appl of AI 30:199–212, URL https://doi.org/10.1016/j.engappai.2014.01.005

    Article  Google Scholar 

  406. Segredo E, Paechter B, Hart E, Gonzalez-Vila CI (2016) Hybrid parameter control approach applied to a diversity-based multi-objective memetic algorithm for frequency assignment problems. In: [2], pp 1517–1524, URL https://doi.org/10.1109/CEC.2016.7743969

  407. Segura C, Segredo E, Miranda G (2017) The importance of the individual encoding in memetic algorithms with diversity control applied to large Sudoku puzzles. In: [3], pp 2152–2160, URL https://doi.org/10.1109/CEC.2017.7969565

  408. Sekar PC, Mangalam H (2018) Third generation memetic optimization technique for energy efficient routing stability and load balancing in MANET. Cluster Computing URL https://link.springer.com/article/10.1007/s10586-017-1524-x

  409. Semet Y, Schoenauer M (2005) An efficient memetic, permutation-based evolutionary algorithm for real-world train timetabling. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, 2–4 September 2005, Edinburgh, UK, IEEE, pp 2752–2759, URL https://doi.org/10.1109/CEC.2005.1555040

  410. Sengupta A, Chakraborti T, Konar A, Kim E, Nagar AK (2012) An adaptive memetic algorithm using a synergy of differential evolution and learning automata. In: IEEE Congress on Evolutionary Computation, IEEE, pp 1–8

    Google Scholar 

  411. Serna-Urán CA, Arango-Serna MD, Zapata-Cortés JA, Gómez-Marín CG (2018) An Agent-Based Memetic Algorithm for Solving Three-Level Freight Distribution Problems, Springer International Publishing, Cham, pp 111–131. URL https://doi.org/10.1007/978-3-319-74002-7_6

    Chapter  Google Scholar 

  412. Shahin AA (2015) Memetic elitist Pareto evolutionary algorithm for virtual network embedding. Computer and Information Science 8(2):73–88

    Article  Google Scholar 

  413. Shan P, Sheng W (2015) An adaptive memetic algorithm for designing artificial neural networks. In: UIC/ATC/ScalCom, IEEE Computer Society, pp 320–323

    Google Scholar 

  414. Shang R, Wang J, Jiao L, Wang Y (2014) An improved decomposition-based memetic algorithm for multi-objective capacitated arc routing problem. Appl Soft Comput 19:343–361

    Article  Google Scholar 

  415. Shang R, Yuan Y, Du B, Jiao L (2017) A memetic algorithm based on decomposition and extended search for multi-objective capacitated arc routing problem. In: Shi Y, Tan KC, Zhang M, Tang K, Li X, Zhang Q, Tan Y, Middendorf M, Jin Y (eds) Simulated Evolution and Learning, Springer International Publishing, pp 272–283

    Google Scholar 

  416. Shang R, Du B, Dai K, Jiao L, Esfahani AMG, Stolkin R (2018) Quantum-inspired immune clonal algorithm for solving large-scale capacitated arc routing problems. Memetic Computing 10(1):81–102

    Article  Google Scholar 

  417. Shao W, Pi D, Shao Z (2017) Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion. Appl Soft Comput 54:164–182

    Article  Google Scholar 

  418. Sharifipour H, Shakeri M, Haghighi H (2017) Structural test data generation using a memetic ant colony optimization based on evolution strategies. Swarm and Evolutionary Computation. URLs https://doi.org/10.1016/j.swevo.2017.12.009, http://www.sciencedirect.com/science/article/pii/S2210650217303371

    Article  Google Scholar 

  419. Shellshear E, Carlson JS, Bohlin R, Tafuri S (2015) A multi-threaded memetic packing algorithm for the ISO luggage packing problem. In: CASE, IEEE, pp 1509–1514

    Google Scholar 

  420. Shen XN, Minku LL, Marturi N, Guo YN, Han Y (2018) A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling. Information Sciences 428:1–29

    Article  MathSciNet  Google Scholar 

  421. Sheng W, Chen S, Fairhurst MC, Xiao G, Mao J (2014) Multilocal search and adaptive niching based memetic algorithm with a consensus criterion for data clustering. IEEE Trans Evolutionary Computation 18(5):721–741

    Article  Google Scholar 

  422. Sheng W, Chen S, Sheng M, Xiao G, Mao J, Zheng Y (2016) Adaptive multisubpopulation competition and multiniche crowding-based memetic algorithm for automatic data clustering. IEEE Trans Evolutionary Computation 20(6):838–858

    Google Scholar 

  423. Sheng W, Shan P, Mao J, Zheng Y, Chen S, Wang Z (2017) An Adaptive Memetic Algorithm With Rank-Based Mutation for Artificial Neural Network Architecture Optimization. {IEEE} Access 5:18,895–18,908

    Article  Google Scholar 

  424. Shi H, Tang K, Liu C, Song X, Hu C, Sun J (2017) Memetic-based schedule synthesis for communication on time-triggered embedded systems. International Journal of Distributed Sensor Networks 13(10):1550147717738,167, https://doi.org/10.1177/1550147717738167

    Article  Google Scholar 

  425. Shi J, Zhang Q, Tsang E (2017) EB-GLS: an improved guided local search based on the big valley structure. Memetic Computing, URL https://doi.org/10.1007/s12293-017-0242-5

    Article  Google Scholar 

  426. Shi Y, Li W, Raman A, Fan S (2017) Optimization of multi-layer optical films with a memetic algorithm and mixed integer programming. ACS Photonics URL http://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b01136

  427. Shi Y, Li W, Raman A, Fan S (2018) Memetic algorithm optimization of thin-film photonic structures for thermal and energy applications. In: Conference on Lasers and Electro-Optics, Optical Society of America, p SF2I.8, URL http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2018-SF2I.8

  428. da Silva Menezes M, Goldbarg MC, Goldbarg EFG (2014) A memetic algorithm for the prize-collecting traveling car renter problem. In: IEEE Congress on Evolutionary Computation, IEEE, pp 3258–3265

    Google Scholar 

  429. Silvestrin PV, Ritt M (2017) An iterated tabu search for the multi-compartment vehicle routing problem. Computers & Operations Research 81:192–202, URL https://doi.org/10.1016/j.cor.2016.12.023

    Article  MathSciNet  MATH  Google Scholar 

  430. Sivakumar V, Rekha D (2018) Underwater acoustic sensor node scheduling using an evolutionary memetic algorithm. Journal of Telecommunications and Information Technology (1):88–94

    Article  Google Scholar 

  431. Smith JE (2007) Credit assignment in adaptive memetic algorithms. In: GECCO, ACM, pp 1412–1419

    Google Scholar 

  432. Smith JE (2012) Estimating meme fitness in adaptive memetic algorithms for combinatorial problems. Evolutionary Computation 20(2):165–188

    Article  Google Scholar 

  433. Soncco-Álvarez JL, Muñoz DM, Ayala-Rincón M (2018) Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals. Evolutionary Computation URL https://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00220

  434. Soria-Alcaraz JA, Carpio JM, Puga H, Melin P, Terashima-Marín H, Cruz Reyes L, Sotelo-Figueroa MA (2014) Generic memetic algorithm for course timetabling ITC2007. In: Castillo O, Melin P, Pedrycz W, Kacprzyk J (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems, Studies in Computational Intelligence, vol 547, Springer, pp 481–492 URL https://doi.org/10.1007/978-3-319-05170-3_33

    Google Scholar 

  435. Soukour AA, Devendeville L, Lucet C, Moukrim A (2013) A memetic algorithm for staff scheduling problem in airport security service. Expert Syst Appl 40(18):7504–7512

    Article  Google Scholar 

  436. Starke S, Hendrich N, Zhang J (2017) A memetic evolutionary algorithm for real-time articulated kinematic motion. In: [3], pp 2473–2479, URL https://doi.org/10.1109/CEC.2017.7969605

  437. Stepaniuk K (2018) Visualization of expressing culinary experience in social network, Memetic approach. Entrepreneurship and Sustainability 5(3):693–702, URL https://doi.org/10.9770/jesi.2018.5.3(21)

  438. Sun J, Garibaldi JM, Krasnogor N, Zhang Q (2013) An intelligent multi-restart memetic algorithm for box constrained global optimisation. Evolutionary Computation 21(1):107–147, URL https://doi.org/10.1162/EVCO_a_00068

    Article  Google Scholar 

  439. Sun J, Miao Z, Gong D (2017) A surrogate-assisted memetic algorithm for interval multi-objective optimization. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–6, https://doi.org/10.1109/SSCI.2017.8280977

  440. Sun Y, Kirley M, Halgamuge SK (2017) A memetic cooperative co-evolution model for large scale continuous optimization. In: Wagner M, Li X, Hendtlass T (eds) Artificial Life and Computational Intelligence, Springer International Publishing, pp 291–300

    Google Scholar 

  441. Sun Y, Liang Y, Zhang Z, Wang J (2017) M-NSGA-II: A memetic algorithm for vehicle routing problem with route balancing. In: IEA/AIE (1), Springer, Lecture Notes in Computer Science, vol 10350, pp 61–71

    Article  Google Scholar 

  442. Szwarc K, Boryczka U (2017) A comparative study of different variants of a memetic algorithm for ATSP. In: Nguyen NT, Papadopoulos GA, Jedrzejowicz P, Trawiński B, Vossen G (eds) Computational Collective Intelligence, Springer International Publishing, Cham, pp 76–86

    Chapter  Google Scholar 

  443. Tang J, Lim M, Ong Y (2007) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput 11(9):873–888

    Article  Google Scholar 

  444. Tavrov D (2015) Memetic approach to anonymizing groups that can be approximated by a fuzzy inference system. In: NAFIPS/WConSC, IEEE, pp 1–6

    Google Scholar 

  445. Tenne Y, Armfield SW (2009) A framework for memetic optimization using variable global and local surrogate models. Soft Comput 13(8–9):781–793

    Article  Google Scholar 

  446. Tesfaldet BT (2008) Automated lecture timetabling using a memetic algorithm. APJOR 25(4):451–475, URL https://doi.org/10.1142/S021759590800181X

    Article  MathSciNet  MATH  Google Scholar 

  447. Ting CK, Liaw RT, Wang TC, Hong TP (2018) Mining fuzzy association rules using a memetic algorithm based on structure representation. Memetic Computing 10(1):15–28

    Article  Google Scholar 

  448. Ting CK, Liao XL, Huang YH, Liaw RT (2017) Multi-vehicle selective pickup and delivery using metaheuristic algorithms. Information Sciences 406:146–169, URL https://doi.org/10.1016/j.ins.2017.04.001

    Article  Google Scholar 

  449. Torres-Velázquez R, Estivill-Castro V (2002) A memetic algorithm guided by quicksort for the error-correcting graph isomorphism problem. In: EvoWorkshops, Springer, Lecture Notes in Computer Science, vol 2279, pp 173–182

    Article  MATH  Google Scholar 

  450. Tripathy B, Sooraj T, Mohanty R (2018) Memetic algorithms and their applications in computer science. In: Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms, IGI Global, pp 73–93

    Google Scholar 

  451. Turabieh H, Abdullah S (2009) Incorporating tabu search into memetic approach for enrolment-based course timetabling problems. In: DMO, IEEE, pp 115–119

    Google Scholar 

  452. Tüű-Szabó B, Földesi P, Kóczy LT (2017) An efficient new memetic method for the traveling salesman problem with time windows. In: Phon-Amnuaisuk S, Ang SP, Lee SY (eds) Multi-disciplinary Trends in Artificial Intelligence, Springer International Publishing, Cham, pp 426–436

    Google Scholar 

  453. Tymerski R, Greenwood G, Sills D (2017) Equity option strategy discovery and optimization using a memetic algorithm. In: Wagner M, Li X, Hendtlass T (eds) Artificial Life and Computational Intelligence, Springer International Publishing, Cham, pp 25–38

    Chapter  Google Scholar 

  454. Valencia CE, Martínez FJZ, Pérez SLP (2017) A simple but effective memetic algorithm for the multidimensional assignment problem. In: 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp 1–6, https://doi.org/10.1109/ICEEE.2017.8108889

  455. Vega-Alvarado E, Portilla-Flores E, Munoz-Hernandez GA, Mezura-Montes E, Sepúlveda-Cervantes G, Bautista-Camino P (2018) A memetic algorithm based on artificial bee colony for optimal synthesis of mechanisms. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 34(1), URL https://www.scipedia.com/public/Vega-Alvarado_et_al_2017a

  456. Vig V, Palekar US (2008) On estimating the distribution of optimal traveling salesman tour lengths using heuristics. European Journal of Operational Research 186(1):111–119, URLs http://dx.doi.org/10.1016/j.ejor.2006.12.066, http://www.sciencedirect.com/science/article/pii/S0377221707001877

    Article  MathSciNet  MATH  Google Scholar 

  457. Vijayaraju P, Sripathy B, Arivudainambi D, Balaji S (2017) Hybrid memetic algorithm with two-dimensional discrete Haar wavelet transform for optimal sensor placement. IEEE Sensors Journal 17(7):2267–2278, https://doi.org/10.1109/JSEN.2017.2662951

    Article  Google Scholar 

  458. Wang C, Ji Z, Wang Y (2017) A Novel Memetic Algorithm Based on Decomposition for Multiobjective Flexible Job Shop Scheduling Problem. Mathematical Problems in Engineering 2017, URL https://www.hindawi.com/journals/mpe/2017/2857564/abs/

  459. Wang C, Tian N, Ji Z, Wang Y (2017) Multi-objective fuzzy flexible job shop scheduling using memetic algorithm. Journal of Statistical Computation and Simulation 87(14):2828–2846

    Article  MathSciNet  Google Scholar 

  460. Wang H, Wang D, Yang S (2009) A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Comput 13(8–9):763–780

    Article  Google Scholar 

  461. Wang H, Fu Y, Huang M, Huang GQ, Wang J (2017) A NSGA-II based memetic algorithm for multiobjective parallel flowshop scheduling problem. Computers & Industrial Engineering 113:185–194, URLs https://doi.org/10.1016/j.cie.2017.09.009, http://www.sciencedirect.com/science/article/pii/S0360835217304187

    Article  Google Scholar 

  462. Wang J, Cui G, Xiao Y, Luo X, Kabelac S (2017) Bi-level heat exchanger network synthesis with evolution method for structure optimization and memetic particle swarm optimization for parameter optimization. Engineering Optimization 49(3):401–416, URLs https://10.1080/0305215X.2016.1191803, http://www.tandfonline.com/doi/abs/10.1080/0305215X.2016.1191803

    Article  Google Scholar 

  463. Wang L, Wang X, Sun D, Wang W (2017) The process optimization of train operation based on multi-objective memetic algorithm using incorporated preference information. In: 2017 36th Chinese Control Conference (CCC), pp 2812–2817, https://doi.org/10.23919/ChiCC.2017.8027791

  464. Wang P, Liu R, Jiang Z (2018) Optimization of combination chemotherapy with dose adjustment using a memetic algorithm. Information Sciences 432:63–78, URLs https://doi.org/10.1016/j.ins.2017.12.002, http://www.sciencedirect.com/science/article/pii/S0020025516319818

    Article  MathSciNet  Google Scholar 

  465. Wang S, Gong M, Du H, Ma L, Miao Q, Du W (2016) Optimizing dynamical changes of structural balance in signed network based on memetic algorithm. Social Networks 44:64–73

    Article  Google Scholar 

  466. Wang S, Gong M, Li H, Yang J, Wu Y (2017) Memetic algorithm based location and topic aware recommender system. Knowl-Based Syst 131:125–134, https://doi.org/10.1016/j.knosys.2017.05.030, https://doi.org/10.1016/j.knosys.2017.05.030

  467. Wang X, Liu J (2017) A memetic algorithm for community detection in bipartite networks. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ESM (eds) Neural Information Processing, Springer International Publishing, pp 89–99

    Google Scholar 

  468. Wang X, Tang L (2017) A machine-learning based memetic algorithm for the multi-objective permutation flowshop scheduling problem. Computers & Operations Research 79:60–77, URLs https://doi.org/10.1016/j.cor.2016.10.003, http://www.sciencedirect.com/science/article/pii/S0305054816302519

    Article  MathSciNet  MATH  Google Scholar 

  469. Wang X, Liu H, Yu Z (2016) A novel heuristic algorithm for IP block mapping onto mesh-based networks-on-chip. The Journal of Supercomputing 72(5):2035–2058, URL https://doi.org/10.1007/s11227-016-1719-6

    Article  Google Scholar 

  470. Wang Y, Li J, Gao K, Pan Q (2011) Memetic algorithm based on improved inver-over operator and Lin-Kernighan local search for the Euclidean traveling salesman problem. Computers & Mathematics with Applications 62(7):2743–2754, URL https://doi.org/10.1016/j.camwa.2011.06.063

    Article  MathSciNet  MATH  Google Scholar 

  471. Wang Y, Hao J, Glover F, Lü Z (2014) A tabu search based memetic algorithm for the maximum diversity problem. Eng Appl of AI 27:103–114

    Article  Google Scholar 

  472. Wang Y, Chen J, Sun H, Yin M (2017) A memetic algorithm for minimum independent dominating set problem. Neural Computing and Applications, URL https://doi.org/10.1007/s00521-016-2813-7

    Article  Google Scholar 

  473. Wang Y, Chen Y, Lin Y (2017) Memetic algorithm based on sequential variable neighborhood descent for the minmax multiple traveling salesman problem. Computers & Industrial Engineering 106:105–122, URL https://doi.org/10.1016/j.cie.2016.12.017

    Article  Google Scholar 

  474. Wang Y, Ding Z, Zuo M, Peng L (2017) An improved memetic differential evolution for college students’ comprehensive quality evaluation. International Journal of Wireless and Mobile Computing 13(3):193–199

    Article  Google Scholar 

  475. Wang Z, Jin H, Tian M (2015) Rank-based memetic algorithm for capacitated arc routing problems. Appl Soft Comput 37:572–584

    Article  Google Scholar 

  476. Wei K, Dinneen MJ (2014) Runtime analysis comparison of two fitness functions on a memetic algorithm for the clique problem. In: IEEE Congress on Evolutionary Computation, IEEE, pp 133–140

    Google Scholar 

  477. WEN T, HUA Jx, YANG Js, ZHAI Xy (2017) Memetic Differential Evolution with Baldwin Effect and Opposition-Based Learning. In: 2017 2nd International Conference on Computer Science and Technology (CST 2017), DEStech Publications, Inc., URL http://dpi-proceedings.com/index.php/dtcse/article/view/12554

  478. Widl M, Musliu N (2014) The break scheduling problem: complexity results and practical algorithms. Memetic Computing 6(2):97–112

    Article  Google Scholar 

  479. Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1):67–82

    Article  Google Scholar 

  480. Wood DA (2017) Gas and oil project time-cost-quality tradeoff: Integrated stochastic and fuzzy multi-objective optimization applying a memetic, nondominated, sorting algorithm. Journal of Natural Gas Science and Engineering 45:143–164, URLs http://dx.doi.org/10.1016/j.jngse.2017.04.033, http://www.sciencedirect.com/science/article/pii/S187551001730224X

    Article  Google Scholar 

  481. Wood DA (2018) Thermal maturity and burial history modelling of shale is enhanced by use of Arrhenius time-temperature index and memetic optimizer. Petroleum 4(1):25–42, URLs https://doi.org/10.1016/j.petlm.2017.10.004, http://www.sciencedirect.com/science/article/pii/S2405656117300548

    Article  Google Scholar 

  482. Wu J, Chang Z, Yuan L, Hou Y, Gong M (2014) A memetic algorithm for resource allocation problem based on node-weighted graphs [application notes]. IEEE Comp Int Mag 9(2):58–69

    Article  Google Scholar 

  483. Wu J, Shen X, Jiao K (2018) Game-Based Memetic Algorithm to the Vertex Cover of Networks. IEEE Transactions on Cybernetics URL https://ieeexplore.ieee.org/abstract/document/8276561/

  484. Wu K, Liu J (2017) Evolutionary game network reconstruction by memetic algorithm with l 1/2 regularization. In: Shi Y, Tan KC, Zhang M, Tang K, Li X, Zhang Q, Tan Y, Middendorf M, Jin Y (eds) Simulated Evolution and Learning, Springer International Publishing, Cham, pp 15–26

    Chapter  Google Scholar 

  485. Wu P, Pan L (2015) Multi-objective community detection based on memetic algorithm. PLOS ONE 10(5):1–31, URL https://doi.org/10.1371/journal.pone.0126845

    Article  Google Scholar 

  486. Wu X, Che A (2018) A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega URL https://www.sciencedirect.com/science/article/pii/S0305048317307922

  487. Xhafa F, Duran B (2008) Parallel memetic algorithms for independent job scheduling in computational grids. In: Cotta C, van Hemert JI (eds) Recent Advances in Evolutionary Computation for Combinatorial Optimization, Studies in Computational Intelligence, vol 153, Springer, pp 219–239, URL https://doi.org/10.1007/978-3-540-70807-0_14

    Chapter  MATH  Google Scholar 

  488. Xhafa F, Alba E, Díaz BD (2007) Efficient batch job scheduling in grids using cellular memetic algorithms. In: 21th International Parallel and Distributed Processing Symposium (IPDPS 2007), Proceedings, 26–30 March 2007, Long Beach, California, USA, IEEE, pp 1–8, URL https://doi.org/10.1109/IPDPS.2007.370437

  489. Xhafa F, Alba E, Dorronsoro B, Duran B (2008) Efficient batch job scheduling in grids using cellular memetic algorithms. J Math Model Algorithms 7(2):217–236, URL https://doi.org/10.1007/s10852-008-9076-y

    Article  MathSciNet  MATH  Google Scholar 

  490. Xhafa F, Duran B, Barolli L, Kolici V, Miho R, Takizawa M (2012) Tuning of operators in memetic algorithms for independent batch scheduling in computational grids. In: Barolli L, Xhafa F, Vitabile S, Uehara M (eds) Sixth International Conference on Complex, Intelligent, and Software Intensive Systems, CISIS 2012, Palermo, Italy, July 4–6, 2012, IEEE Computer Society, pp 335–342, URL https://doi.org/10.1109/CISIS.2012.22

  491. Xiao C, Dong Z, Xu Y, Meng K, Zhou X, Zhang X (2016) Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast. Memetic Computing 8(3):223–233

    Article  Google Scholar 

  492. Xiao J, Yang Y, Ma X, Zhou J, Zhu Z (2016) Multi-objective memetic algorithm for solving pickup and delivery problem with dynamic customer requests and traffic information. In: CEC, IEEE, pp 1964–1970

    Google Scholar 

  493. Xu J, Yin Y, Cheng TCE, Wu C, Gu S (2014) A memetic algorithm for the re-entrant permutation flowshop scheduling problem to minimize the makespan. Appl Soft Comput 24:277–283

    Article  Google Scholar 

  494. Xue X, Ren A (2017) Using memetic algorithm for matching process models. In: 2017 13th International Conference on Computational Intelligence and Security (CIS), pp 11–15, https://doi.org/10.1109/CIS.2017.00011

  495. Xue X, Wang Y (2015) Optimizing ontology alignments through a memetic algorithm using both matchFmeasure and unanimous improvement ratio. Artif Intell 223:65–81

    Article  MathSciNet  MATH  Google Scholar 

  496. Xue X, Wang Y (2016) Using memetic algorithm for instance coreference resolution. IEEE Trans Knowl Data Eng 28(2):580–591

    Article  Google Scholar 

  497. Xue X, Wang Y, Ren A (2014) Optimizing ontology alignment through memetic algorithm based on partial reference alignment. Expert Syst Appl 41(7):3213–3222

    Article  Google Scholar 

  498. Yan J, Gong M, Ma L, Wang S, Shen B (2016) Structure optimization based on memetic algorithm for adjusting epidemic threshold on complex networks. Appl Soft Comput 49:224–237

    Article  Google Scholar 

  499. Yan L, Mei Y, Ma H, Zhang M (2016) Evolutionary web service composition: A graph-based memetic algorithm. In: CEC, IEEE, pp 201–208

    Google Scholar 

  500. Yan S, Cai K (2017) A multi-objective multi-memetic algorithm for network-wide conflict-free 4D flight trajectories planning. Chinese Journal of Aeronautics 30(3):1161–1173, URL https://doi.org/10.1016/j.cja.2017.03.008

    Article  Google Scholar 

  501. Yan S, Cai K, Zhu Y (2015) A multi-objective memetic algorithm for network-wide flights planning optimization. In: ICTAI, IEEE Computer Society, pp 518–525

    Google Scholar 

  502. Yang S, Huang K (2017) Combinatorial optimization and simulation for weapon system portfolio using self-adaptive Memetic algorithm. Journal of Engineering Research 5(1), URL http://kuwaitjournals.org/jer/index.php/JER/article/view/1275

  503. Yang Y, Ma X, Sun Y, Zhu Z (2017) Multi-objective memetic algorithm based on three-dimensional request prediction for dynamic pickup-and-delivery problem with time windows. In: Shi Y, Tan KC, Zhang M, Tang K, Li X, Zhang Q, Tan Y, Middendorf M, Jin Y (eds) Simulated Evolution and Learning, Springer International Publishing, Cham, pp 810–820

    Chapter  Google Scholar 

  504. Yang Y, Sun Y, Zhu Z (2017) Multi-objective memetic algorithm based on request prediction for dynamic pickup-and-delivery problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 1728–1733, https://doi.org/10.1109/CEC.2017.7969510

  505. Yannibelli V, Amandi A (2015) Project scheduling: A memetic algorithm with diversity-adaptive components that optimizes the effectiveness of human resources. Polibits 52:93–103

    Article  Google Scholar 

  506. Yao T, Yao X, Han S, Wang Y, Cao D, Wang F (2017) Memetic algorithm with adaptive local search for capacitated arc routing problem. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp 836–841, https://doi.org/10.1109/ITSC.2017.8317903

  507. Ye T, Wang T, Lü Z, Hao J (2014) A multi-parent memetic algorithm for the linear ordering problem. CoRR abs/1405.4507

    Google Scholar 

  508. Yu Y, Gao S, Cheng S, Wang Y, Song S, Yuan F (2017) CBSO: a memetic brain storm optimization with chaotic local search. Memetic Computing, URL https://doi.org/10.1007/s12293-017-0247-0

    Article  Google Scholar 

  509. Yuan Y, Xu H (2015) Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans Automation Science and Engineering 12(1):336–353

    Article  Google Scholar 

  510. Žalik KR, Žalik B (2018) Memetic algorithm using node entropy and partition entropy for community detection in networks. Information Sciences 445:38–49

    Article  MathSciNet  Google Scholar 

  511. Zeng R, Wen X (2018) Dynamic categorization of semantics of fashion language: A memetic approach. International Journal of Society, Culture & Language 6(1):101–114

    Google Scholar 

  512. Zeng Y, Chen X, Ong Y, Tang J, Xiang Y (2017) Structured memetic automation for online human-like social behavior learning. IEEE Trans Evolutionary Computation 21(1):102–115, URL https://doi.org/10.1109/TEVC.2016.2577593

    Article  Google Scholar 

  513. Zeng ZZ, Yu XG, Chen M, Liu YY (2018) A memetic algorithm to pack unequal circles into a square. Computers & Operations Research 92:47–55

    Article  MathSciNet  MATH  Google Scholar 

  514. Zhang C, Hei X, Yang D, Wang L (2016) A memetic particle swarm optimization algorithm for community detection in complex networks. IJPRAI 30(2)

    Article  MathSciNet  Google Scholar 

  515. Zhang J, Song Y (2017) Mathematical Model and Algorithm for the Reefer Mechanic Scheduling Problem at Seaports. Discrete Dynamics in Nature and Society URL https://doi.org/10.1155/2017/4730253

    MATH  Google Scholar 

  516. Zhang M, Ma J, Gong M, Li H, Liu J (2017) Memetic algorithm based feature selection for hyperspectral images classification. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 495–502, https://doi.org/10.1109/CEC.2017.7969352

  517. Zhang X, Zhang X (2017) Thinning of antenna array via adaptive memetic particle swarm optimization. EURASIP Journal on Wireless Communications and Networking 2017(1):183, URL https://doi.org/10.1186/s13638-017-0968-2

  518. Zhang Y, Cai Z, Wu J, Wang X, Liu X (2015) A memetic algorithm based extreme learning machine for classification. In: IJCNN, IEEE, pp 1–8

    Google Scholar 

  519. Zhang Y, Wu J, Cai Z, Zhang P, Chen L (2016) Memetic extreme learning machine. Pattern Recognition 58:135–148

    Article  Google Scholar 

  520. Zhang Y, Mei Y, Tang K, Jiang K (2017) Memetic algorithm with route decomposing for periodic capacitated arc routing problem. Appl Soft Comput 52:1130–1142

    Article  Google Scholar 

  521. Zhang Z, Che O, Cheang B, Lim A, Qin H (2013) A memetic algorithm for the multiperiod vehicle routing problem with profit. European Journal of Operational Research 229(3):573–584

    Article  MATH  Google Scholar 

  522. Zhao H, Xu WA, Jiang R (2015) The memetic algorithm for the optimization of urban transit network. Expert Syst Appl 42(7):3760–3773

    Article  Google Scholar 

  523. jian Zhao Z, qing He X, Liu F (2017) An improved multi-objective memetic algorithm for bi-objective permutation flow shop scheduling. In: 2017 International Conference on Service Systems and Service Management, pp 1–6, https://doi.org/10.1109/ICSSSM.2017.7996154

  524. Zhou M, Liu J (2014) A memetic algorithm for enhancing the robustness of scale-free networks against malicious attacks. Physica A: Statistical Mechanics and its Applications 410:131–143, URLs http://dx.doi.org/10.1016/j.physa.2014.05.002, http://www.sciencedirect.com/science/article/pii/S0378437114003665

    Article  Google Scholar 

  525. Zhou M, Cheng X, Guo X, Gu M, Zhang H, Song X (2016) Improving failure detection by automatically generating test cases near the boundaries. In: 40th IEEE Annual Computer Software and Applications Conference, COMPSAC 2016, Atlanta, GA, USA, June 10–14, 2016, pp 164–173, URL https://doi.org/10.1109/COMPSAC.2016.137

  526. Zhou T, Lü Z, Ye T, Zhou K (2017) A memetic algorithm for the linear ordering problem with cumulative costs. In: Gao X, Du H, Han M (eds) Combinatorial Optimization and Applications, Springer International Publishing, Cham, pp 518–526

    Chapter  Google Scholar 

  527. Zhou Y, Hao J, Glover F (2017) Memetic search for identifying critical nodes in sparse graphs. CoRR abs/1705.04119, URL http://arxiv.org/abs/1705.04119

  528. Zhou Y, Hao JK, Duval B (2017) Opposition-based memetic search for the maximum diversity problem. IEEE Transactions on Evolutionary Computation 21(5):731–745, https://doi.org/10.1109/TEVC.2017.2674800

    Article  Google Scholar 

  529. Zhou Z, Ong Y, Lim M, Lee B (2007) Memetic algorithm using multi-surrogates for computationally expensive optimization problems. Soft Comput 11(10):957–971

    Article  Google Scholar 

  530. Zhu Z, Zhou J, Ji Z, Shi Y (2011) DNA sequence compression using adaptive particle swarm optimization-based memetic algorithm. IEEE Trans Evolutionary Computation 15(5):643–658

    Article  Google Scholar 

  531. Zhu Z, Xiao J, He S, Ji Z, Sun Y (2016) A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem. Inf Sci 329:73–89

    Article  Google Scholar 

  532. Zhuang Z, Fan S, Xu H, Zheng J (2016) A memetic algorithm using partial solutions for graph coloring problem. In: CEC, IEEE, pp 3200–3206

    Google Scholar 

  533. Zou X, Liu J (2017) A Mutual Information based Two-phase Memetic Algorithm for Large-scale Fuzzy Cognitive Map Learning. IEEE Transactions on Fuzzy Systems pp 1–1, https://doi.org/10.1109/TFUZZ.2017.2764445

    Article  Google Scholar 

  534. Zychowski A, Gupta A, Mańdziuk J, Ong YS (2017) Addressing Expensive Multi-objective Games with Postponed Preference Articulation via Memetic Co-evolution. ArXiv e-prints 1711.06763

    Google Scholar 

Download references

Acknowledgements

Pablo Moscato acknowledges previous support from the Australian Research Council Future Fellowship FT120100060 and Australian Research Council Discovery Projects DP120102576 and DP140104183. The authors thank Mohammad Nazmul Haque for his help during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Moscato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moscato, P., Mathieson, L. (2019). Memetic Algorithms for Business Analytics and Data Science: A Brief Survey. In: Moscato, P., de Vries, N. (eds) Business and Consumer Analytics: New Ideas. Springer, Cham. https://doi.org/10.1007/978-3-030-06222-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06222-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06221-7

  • Online ISBN: 978-3-030-06222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics