Skip to main content

Languages for Probabilistic Modeling Over Structured and Relational Domains

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

In this chapter we survey languages that specify probability distributions using graphs, predicates, quantifiers, fixed-point operators, recursion, and other logical and programming constructs. Many of these languages have roots both in probabilistic logic and in the desire to enhance Bayesian networks and Markov random fields. We examine their origins and comment on various proposals up to recent developments in probabilistic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We might be more even general by introducing “probabilistic quantifiers”, say by writing to mean \(\mathbb {P}\left( \phi \right) \ge \alpha \). We could then nest within other formulas (Halpern 2003). We avoid this generality here.

  2. 2.

    This example is due to my colleague Marcelo Finger (personal communication).

  3. 3.

    Lists of languages can be found at http://probabilistic-programming.org/wiki/Home and https://en.wikipedia.org/wiki/Probabilistic_programming_language.

References

  • Abadi M, Halpern JY (1994) Decidability and expressiveness for first-order logics of probability. Inf Comput 112(1):1–36

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen KA, Hooker JN (1994) Bayesian logic. Decis Support Syst 11:191–210

    Article  Google Scholar 

  • Baader F, Nutt W (2002) Basic description logics. Description logic handbook. Cambridge University Press, Cambridge, pp 47–100

    Google Scholar 

  • Baader F, Horrocks I, Lutz C, Sattler U (2017) An introduction to description logic. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bacchus F (1990) Representing and reasoning with probabilistic knowledge: a logical approach. MIT Press, Cambridge

    Google Scholar 

  • Bacchus F (1993) Using first-order probability logic for the construction of Bayesian networks. In: Conference on uncertainty in artificial intelligence, pp 219–226

    Google Scholar 

  • Baral C (2003) Knowledge representation, reasoning, and declarative problem solving. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Baral C, Gelfond M, Rushton N (2009) Probabilistic reasoning with answer sets. Theory Pract Log Program 9(1):57–144

    Article  MathSciNet  MATH  Google Scholar 

  • Barthe G, Gordon AD, Katoen JP, McIver A (2015) Challenges and trends in probabilistic programming. In: Dagstuhl reports (Seminar 15181), vol 5. Dagstuhl Publishing, pp 123–141

    Google Scholar 

  • Bessiere P, Mazer E, Ahuactzin JM, Mekhnacha K (2013) Bayesian programming. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  • Boole G (1958) The laws of thought. Dover edition, New York

    MATH  Google Scholar 

  • Borgida A (1996) On the relative expressiveness of description logics and predicate logics. Artif Intell 82(1–2):353–367

    Article  MathSciNet  Google Scholar 

  • Bruno G, Gilio A (1980) Applicazione del metodo del simplesso al teorema fondamentale per le probabilità nella concezione soggettivistica. Statistica 40:337–344

    MathSciNet  MATH  Google Scholar 

  • Bunescu R, Mooney RJ (2004) Collective information extraction with relational Markov networks. In: Annual meeting of the association for computational linguistics

    Google Scholar 

  • Buntine WL (1994) Operations for learning with graphical models. J Artif Intell Res 2:159–225

    Article  Google Scholar 

  • Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw 76(1):1–32. https://doi.org/10.18637/jss.v076.i01

  • Carvalho RN, Laskey KB, Costa PCG, Ladeira M, Santos LL, Matsumoto S (2010) UnBayes: modeling uncertainty for plausible reasoning in the semantic web. In: Wu G (ed) Semantic web. InTech, pp 1–28

    Google Scholar 

  • Carvalho RN, Laskey KB, Costa PC (2013) PR-OWL 2.0 — bridging the gap to OWL semantics. In: URSW 2008-2010/UniDL 2010, LNAI 7123. Springer, pp 1–18

    Google Scholar 

  • Ceylan ÍÍ, Peñaloza R (2014) The Bayesian description logic \(\cal BEL\it \). In: International joint conference on automated reasoning, pp 480–494

    Google Scholar 

  • Ceylan ÍÍ, Lukasiewicz T, Peñaloza R (2016) Complexity results for probabilistic Datalog\(^\pm \). In: European conference on artificial intelligence, pp 1414–1422

    Google Scholar 

  • Clark KL (1978) Negation as failure. Logic and data bases. Springer, Berlin, pp 293–322

    Chapter  Google Scholar 

  • Coletti G, Scozzafava R (2002) Probabilistic logic in a coherent setting. In: Trends in logic, vol 15. Kluwer, Dordrecht

    Google Scholar 

  • Costa PCG, Laskey KB (2006) PR-OWL: a framework for probabilistic ontologies. In: Conference on formal ontology in information systems

    Google Scholar 

  • Costa VS, Page D, Qazi M, Cussens J (2003) CLP(\(\cal{BN}\)): constraint logic programming for probabilistic knowledge. In: Kjaerulff U, Meek C (eds) Conference on uncertainty in artificial intelligence. Morgan-Kaufmann, San Francisco, pp 517–524

    Google Scholar 

  • Cozman FG (2000) Credal networks. Artif Intell 120:199–233

    Article  MathSciNet  MATH  Google Scholar 

  • Cozman FG, Mauá DD (2015) The complexity of plate probabilistic models. In: Scalable uncertainty management. LNCS, vol 9310. Springer, Cham, pp 36–49

    Google Scholar 

  • Cozman FG, Mauá DD (2017a) The complexity of inferences and explanations in probabilistic logic programming. Symbolic and quantitative approaches to reasoning with uncertainty. Lecture notes in computer science, vol 10369. Springer, Cham, pp 449–458

    Google Scholar 

  • Cozman FG, Mauá DD (2017b) On the complexity of propositional and relational credal networks. Int J Approx Reason 83:298–319

    Article  MathSciNet  MATH  Google Scholar 

  • Cozman FG, Mauá DD (2017c) On the semantics and complexity of probabilistic logic programs. J Artif Intell Res 60:221–262

    Article  MathSciNet  MATH  Google Scholar 

  • Cozman FG, de Campos CP, da Rocha JCF (2008) Probabilistic logic with independence. Int J Approx Reason 49:3–17

    Article  MathSciNet  MATH  Google Scholar 

  • Cussens J (1999) Parameter estimation in stochastic logic programs. Mach Learn 44(3):245–271

    Article  MathSciNet  MATH  Google Scholar 

  • da Costa PCG, Laskey KB (2005) Of Klingons and starships: Bayesian logic for the 23rd century. In: Conference on uncertainty in artificial intelligence

    Google Scholar 

  • d’Amato C, Fanizzi N, Lukasiewicz T (2008) Tractable reasoning with Bayesian description logics. In: Greco S, Lukasiewicz T (eds) International conference on scalable uncertainty management. Lecture notes in computer science, vol 5291. Springer, pp 146–159

    Google Scholar 

  • Dantsin E, Eiter T, Voronkov A (2001) Complexity and expressive power of logic programming. ACM Comput Surv 33(3):374–425

    Article  Google Scholar 

  • Darwiche A (2009) Modeling and reasoning with Bayesian networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • De Bona G, Cozman FG (2017) Encoding the consistency of relational Bayesian networks. In: Encontro Nacional de Inteligência Artificial e Computacional, Uberlândia, Brasil

    Google Scholar 

  • de Campos CP, Cozman FG, Luna JEO (2009) Assembling a consistent set of sentences in relational probabilistic logic with stochastic independence. J Appl Log 7:137–154

    Article  MathSciNet  MATH  Google Scholar 

  • de Finetti B (1964) Foresight: its logical laws, its subjective sources. In: Kyburg HE Jr, Smokler HE (eds) Studies in subjective probability. Wiley, New York

    Google Scholar 

  • De Raedt L (2008) Logical and relational learning. Springer, Berlin

    Book  MATH  Google Scholar 

  • De Raedt L, Kersting K (2004) Probabilistic inductive logic programming. In: International conference on algorithmic learning theory, pp 19–36

    Google Scholar 

  • De Raedt LD, Kimmig A (2015) Probabilistic (logic) programming concepts. Mach Learn 100:5–47

    Google Scholar 

  • De Raedt L, Frasconi P, Kersting K, Muggleton S (2010) Probabilistic inductive logic programming. Springer, Berlin

    Book  MATH  Google Scholar 

  • De Raedt LD, Kersting K, Natarajan S, Poole D (2016) Statistical relational artificial intelligence: logic, probability, and computation. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  • de Salvo Braz R, Amir E, Roth D (2007) Lifted first-order probabilistic inference. In: Getoor L, Taskar B (eds) An introduction to statistical relational learning. MIT Press, Cambridge, pp 433–451

    Google Scholar 

  • Ding Z, Peng Y, Pan R (2006) BayesOWL: uncertainty modeling in semantic web ontologies. In: Soft computing in ontologies and semantic web. Studies in fuzziness and soft computing, vol 204. Springer, Berlin, pp 3–29

    Google Scholar 

  • Domingos P, Lowd D (2009) Markov logic: an interface layer for artificial intelligence. Morgan and Claypool, San Rafael

    MATH  Google Scholar 

  • Eiter T, Ianni G, Krennwalner T (2009) Answer set programming: a primer. Reasoning web. Springer, Berlin, pp 40–110

    Google Scholar 

  • Enderton HB (1972) A mathematical introduction to logic. Academic, Orlando

    MATH  Google Scholar 

  • Fagin R, Halpern JY, Megiddo N (1990) A logic for reasoning about probabilities. Inf Comput 87:78–128

    Article  MathSciNet  MATH  Google Scholar 

  • Fierens D, Blockeel H, Ramon J, Bruynooghe M (2004) Logical Bayesian networks. In: Workshop on multi-relational data mining, pp 19–30

    Google Scholar 

  • Fierens D, Blockeel H, Bruynooghe M, Ramon J (2005) Logical Bayesian networks and their relation to other probabilistic logical models. In: Conference on inductive logic programming, pp 121–135

    Google Scholar 

  • Fierens D, Van den Broeck G, Renkens J, Shrerionov D, Gutmann B, Janssens G, De Raedt L (2014) Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract Log Program 15(3):358–401

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman N, Getoor L, Koller D, Pfeffer A (1999) Learning probabilistic relational models. In: International joint conference on artificial intelligence, pp 1300–1309

    Google Scholar 

  • Fuhr N (1995) Probabilistic datalog - a logic for powerful retrieval methods. Conference on research and development in information retrieval, Seattle, Washington, pp 282–290

    Google Scholar 

  • Gaifman H (1964) Concerning measures on first-order calculi. Isr J Math 2:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Gaifman H, Snir M (1982) Probabilities over rich languages, testing and randomness. J Symb Log 47(3):495–548

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfond M, Lifschitz V (1988) The stable model semantics for logic programming. Proceedings of international logic programming conference and symposium 88:1070–1080

    Google Scholar 

  • Getoor L, Grant J (2006) PRL: a probabilistic relational language. Mach Learn 62:7–31

    Article  Google Scholar 

  • Getoor L, Taskar B (2007) Introduction to statistical relational learning. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  • Getoor L, Friedman N, Koller D, Pfeffer A, Taskar B (2007) Probabilistic relational models. In: Introduction to statistical relational learning, MIT Press, Cambridge

    Google Scholar 

  • Gilks WR, Thomas A, Spiegelhalter D (1993) A language and program for complex Bayesian modelling. The Statistician 43:169–178

    Article  Google Scholar 

  • Glesner S, Koller D (1995) Constructing flexible dynamic belief networks from first-order probabilistic knowledge bases. In: Symbolic and quantitative approaches to reasoning with uncertainty, pp 217–226

    Google Scholar 

  • Goldman RP, Charniak E (1990) Dynamic construction of belief networks. In: Conference of uncertainty in artificial intelligence, pp 90–97

    Google Scholar 

  • Goodman ND, Mansinghka VK, Roy D, Bonawitz K, Tenenbaum JB (2008) Church: a language for generative models. In: Conference in uncertainty in artificial intelligence, pp 220–229

    Google Scholar 

  • Gordon AD, Grapple T, Rolland N, Russo C, Bergstrom J, Guiver J (2014a) Tabular: a schema-driven probabilistic programming language. ACM SIGPLAN Not 49(1):321–334

    Article  MATH  Google Scholar 

  • Gordon AD, Henzinger TA, Nori AV, Rajmani SK (2014b) Probabilistic programming. In: Proceedings of the conference on future of software engineering. ACM, New York, pp 167–181. https://doi.org/10.1145/2593882.2593900

  • Hadjichristodoulou S, Warren DS (2012) Probabilistic logic programming with well-founded negation. In: International symposium on multiple-valued logic, pp 232–237

    Google Scholar 

  • Hailperin T (1976) Boole’s logic and probability: a critical exposition from the standpoint of contemporary algebra, logic, and probability theory. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Hailperin T (1996) Sentential probability logic. Lehigh University Press, Bethlehem

    MATH  Google Scholar 

  • Halpern JY (2003) Reasoning about uncertainty. MIT Press, Cambridge

    MATH  Google Scholar 

  • Hansen P, Jaumard B (1996) Probabilistic satisfiability. Technical report G-96-31, Les Cahiers du GERAD, École Polytechique de Montréal

    Google Scholar 

  • Heckerman D, Chickering DM, Meek C, Rounthwaite R, Kadie C (2000) Dependency networks for inference, collaborative filtering, and data visualization. J Mach Learn Res 1:49–75

    MATH  Google Scholar 

  • Heckerman D, Meek C, Koller D (2007) Probabilistic entity-relationship models, PRMs, and plate models. In: Taskar B, Getoor L (eds) Introduction to statistical relational learning. MIT Press, Cambridge, pp 201–238

    Google Scholar 

  • Hoover DN (1978) Probability logic. Ann Math Log 14:287–313

    Article  Google Scholar 

  • Horsch MC, Poole D (1990) A dynamic approach to probabilistic inference using Bayesian networks. In: Conference of uncertainty in artificial intelligence, pp 155–161

    Google Scholar 

  • Jaeger M (2000) On the complexity of inference about probabilistic relational models. Artif Intell 117(2):297–308

    Article  MathSciNet  MATH  Google Scholar 

  • Jaeger M (2002) Relational Bayesian networks: a survey. Linkop Electron Artic Comput Inf Sci 6

    Google Scholar 

  • Jaeger M (2014) Lower complexity bounds for lifted inference. Theory Pract Log Program 15(2):246–264

    Article  MathSciNet  MATH  Google Scholar 

  • Jain D, Kirchlechner B, Beetz M (2007) Extending Markov logic to model probability distributions in relational domains. In: KI 2007: advances in artificial intelligence. Lecture Notes in Computer Science, vol 4667. Springer, Berlin

    Google Scholar 

  • Keisler HJ (1985) Probabilistic quantifiers. In: Barwise J, Feferman S (eds) Model-theoretic logic. Springer, New York, pp 509–556

    Google Scholar 

  • Kersting K (2012) Lifted probabilistic inference. In: De Raedt L, Bessiere C, Dubois D, Doherty P, Frasconi P, Heintz F, Lucas P (eds) European conference on artificial intelligence. IOS Press, Amsterdam

    Google Scholar 

  • Kersting K, De Raedt L, Kramer S (2000) Interpreting Bayesian logic programs. In: AAAI-2000 workshop on learning statistical models from relational data

    Google Scholar 

  • Klinov P, Parsia B (2011) A hybrid method for probabilistic satisfiability. In: Bjorner N, Sofronie-Stokkermans V (eds) International conference on automated deduction. Springer, Berlin, pp 354–368

    Google Scholar 

  • Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge

    MATH  Google Scholar 

  • Koller D, Pfeffer A (1997) Object-oriented Bayesian networks. In: Conference on uncertainty in artificial intelligence, pp 302–313

    Google Scholar 

  • Koller D, Pfeffer A (1998) Probabilistic frame-based systems. In: National conference on artificial intelligence (AAAI), pp 580–587

    Google Scholar 

  • Koller D, Levy AY, Pfeffer A (1997a) P-CLASSIC: a tractable probablistic description logic. In: AAAI, pp 390–397

    Google Scholar 

  • Koller D, McAllester D, Pfeffer A (1997b) Effective Bayesian inference for stochastic programs. In: AAAI, pp 740–747

    Google Scholar 

  • Kordjamshidi P, Roth D, Wu H (2015) Saul: towards declarative learning based programming. In: International joint conference on artificial intelligence (IJCAI), pp 1844–1851

    Google Scholar 

  • Lakshmanan LVS, Sadri F (1994) Probabilistic deductive databases. In: Symposium on logic programming, pp 254–268

    Google Scholar 

  • Laskey KB (2008) MEBN: a language for first-order Bayesian knowledge bases. Artif Intell 172(2–3):140–178

    Article  MathSciNet  MATH  Google Scholar 

  • Lee J, Wang Y (2015) A probabilistic extension of the stable model semantics. In: AAAI spring symposium on logical formalizations of commonsense reasoning, pp 96–102

    Google Scholar 

  • Liao L, Fox D, Kautz H (2006) Location-based activity recognition. In: Advances in neural information processing systems, pp 787–794

    Google Scholar 

  • Lukasiewicz T (1998) Probabilistic logic programming. In: European conference on artificial intelligence, pp 388–392

    Google Scholar 

  • Lukasiewicz T (2005) Probabilistic description logic programs. In: Proceedings of the 8th European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU 2005). pp 737–749, Springer, Barcelona

    Google Scholar 

  • Lukasiewicz T (2008) Expressive probabilistic description logics. Artif Intell 172(6–7):852–883

    Article  MathSciNet  MATH  Google Scholar 

  • Lukasiewicz T, Straccia U (2008) Managing uncertainty and vagueness in description logics for the semantic web. J Web Semant 6:291–308

    Article  Google Scholar 

  • Lukasiewicz T, Predoiu L, Stuckenschmidt H (2011) Tightly integrated probabilistic description logic programs for representing ontology mappings. Ann Math Artif Intell 63(3/4):385–425

    Article  MathSciNet  MATH  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067

    Article  MathSciNet  Google Scholar 

  • Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012) The BUGS book: a practical introduction to Bayesian analysis. CRC Press/Chapman and Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Mahoney S, Laskey KB (1996) Network engineering for complex belief networks. In: Conference on uncertainty in artificial intelligence

    Google Scholar 

  • Mansinghka V, Radul A (2014) CoreVenture: a highlevel, reflective machine language for probabilistic programming. In: NIPS workshop on probabilistic programming

    Google Scholar 

  • Mauá DD, Cozman FG (2016) The effect of combination functions on the complexity of relational Bayesian networks. In: Conference on probabilistic graphical models — JMLR workshop and conference proceedings, vol 52, pp 333–344

    Google Scholar 

  • McCallum A, Schultz K, Singh S (2009) Factorie: probabilistic programming via imperatively defined factor graphs. In: Advances in neural information processing systems (NIPS), pp 1249–1257

    Google Scholar 

  • McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer B, Michie D (eds) Machine intelligence, vol 4. Edinburgh University Press, pp 463–502

    Google Scholar 

  • Milch B, Russell S (2007) First-order probabilistic languages: into the unknown. In: International conference on inductive logic programming

    Google Scholar 

  • Milch B, Marthi B, Russell S, Sontag D, Ong DL, Kolobov A (2005a) BLOG: probabilistic models with unknown objects. In: IJCAI

    Google Scholar 

  • Milch B, Marthi B, Sontag D, Russell S, Ong DL, Kolobov A (2005b) Approximate inference for infinite contingent Bayesian networks. In: Artificial intelligence and statistics

    Google Scholar 

  • Minka T, Winn JM, Guiver JP, Webster S, Zaykov Y, Yangel B, Spengler A, Bronskill J (2014) Infer.NET 2.6. Technical report, Microsoft Research Cambridge

    Google Scholar 

  • Muggleton S (1996) Stochastic logic programs. Advances in inductive logic programming. IOS Press, Amsterdam, pp 254–264

    Google Scholar 

  • Narayanan P, Carette J, Romano W, Shan C, Zinkov R (2016) Probabilistic inference by program transformation in Hakaru (system description). In: Functional and logic programming, pp 62–79

    Google Scholar 

  • Neville J, Jensen D (2007) Relational dependency networks. J Mach Learn Res 8:653–692

    MATH  Google Scholar 

  • Ng R, Subrahmanian VS (1992) Probabilistic logic programming. Inf Comput 101(2):150–201

    Article  MathSciNet  MATH  Google Scholar 

  • Ngo L, Haddawy P (1997) Answering queries from context-sensitive probabilistic knowledge bases. Theor Comput Sci 171(1–2):147–177

    Article  MathSciNet  MATH  Google Scholar 

  • Nickles M, Mileo A (2015) A system for probabilistic inductive answer set programming. In: International Conference on scalable uncertainty management, vol 9310. Lecture notes in computer science, pp 99–105

    Google Scholar 

  • Nilsson NJ (1986) Probabilistic logic. Artif Intell 28:71–87

    Article  MathSciNet  MATH  Google Scholar 

  • Nitti D, Laet TD, Raedt LD (2016) Probabilistic logic programming with hybrid domains. Mach Learn 103(3):407–449

    Article  MathSciNet  MATH  Google Scholar 

  • Paige B, Wood F (2014) A compilation target for probabilistic programming languages. International conference on machine learning, JMLR 32:1935–1943

    Google Scholar 

  • Park S, Pfenning F, Thrun S (2008) A probabilistic language based on sampling functions. ACM Trans Program Lang Syst 31(1):4:1–4:45

    Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo

    MATH  Google Scholar 

  • Pearl J (2009) Causality: models, reasoning, and inference, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pfeffer A (2001) IBAL: a probabilistic rational programming language. In: International joint conference on artificial intelligence, pp 733–740

    Google Scholar 

  • Pfeffer A (2016) Practical probabilistic programming. Manning Publications, Shelter Island

    Google Scholar 

  • Pfeffer A, Koller D (2000) Semantics and inference for recursive probability models. In: AAAI, pp 538–544

    Google Scholar 

  • Poole D (1993a) Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities. In: 13th international joint conference on artificial intelligence, pp 606–612

    Google Scholar 

  • Poole D (1993b) Probabilistic Horn abduction and Bayesian networks. Artif Intell 64:81–129

    Article  MATH  Google Scholar 

  • Poole D (1997) The independent choice logic for modelling multiple agents under uncertainty. Artif Intell 94(1/2):7–56

    Article  MathSciNet  MATH  Google Scholar 

  • Poole D (2003) First-order probabilistic inference. In: International joint conference on artificial intelligence (IJCAI), pp 985–991

    Google Scholar 

  • Poole D (2008) The independent choice logic and beyond. In: De Raedt L, Frasconi P, Kersting K, Muggleton S (eds) Probabilistic inductive logic programming. Lecture Notes in Computer Science, vol 4911. Springer, Berlin, pp 222–243

    Google Scholar 

  • Poole D (2010) Probabilistic programming languages: independent choices and deterministic systems. In: Dechter R, Geffner H, Halpern JY (eds) Heuristics, probability and causality — a tribute to Judea pearl. College Publications, pp 253–269

    Google Scholar 

  • Poole D, Buchman D, Natarajan S, Kersting K (2012) Aggregation and population growth: the relational logistic regression and Markov logic cases. In: International Workshop on Statistical Relational AI

    Google Scholar 

  • Pourret O, Naim P, Marcot B (2008) Bayesian networks – a practical guide to applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Predoiu L, Stuckenschmidt H (2009) Probabilistic models for the semantic web. The semantic web for knowledge and data management: technologies and practices. IGI Global, Hershey, pp 74–105

    Chapter  Google Scholar 

  • Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1–2):107–136

    Article  Google Scholar 

  • Riguzzi F (2015) The distribution semantics is well-defined for all normal programs. In: Riguzzi F, Vennekens J (eds) International workshop on probabilistic logic programming, CEUR workshop proceedings, vol 1413, pp 69–84

    Google Scholar 

  • Riguzzi F, Bellodi E, Zese R (2014) A history of probabilistic inductive logic programming. Front Robot AI 1:1–5

    Article  Google Scholar 

  • Riguzzi F, Bellodi E, Lamma E, Zese R (2015) Probabilistic description logics under the distribution semantics. Semant Web 6(5):477–501

    Article  MATH  Google Scholar 

  • Riguzzi F, Bellodi E, Zese R, Cota G, Lamma E (2017) A survey of lifted inference approaches for probabilistic logic programming under the distribution semantics. Int J Approx Reason 80:313–333

    Article  MathSciNet  MATH  Google Scholar 

  • Russell S (2015) Unifying logic and probability. Commun ACM 58(7):88–97

    Article  Google Scholar 

  • Saad F, Mansinghka VK (2016) A probabilistic programming approach to probabilistic data analysis. In: Advances in neural information processing systems (NIPS)

    Google Scholar 

  • Sadeghi K, Lauritzen S (2014) Markov properties for mixed graphs. Bernoulli 20(2):676–696

    Article  MathSciNet  MATH  Google Scholar 

  • Salvatier J, Wiecki TV, Fonnesbeck C (2016) Probabilistic programming in Python using PyMC3. PeerJ

    Google Scholar 

  • Sanner S (2011) Relational dynamic influence diagram language (RDDL): language description. Technical report, NICTA and Australian National University

    Google Scholar 

  • Sato T (1995) A statistical learning method for logic programs with distribution semantics. In: Conference on logic programming, pp 715–729

    Google Scholar 

  • Sato T, Kameya Y (2001) Parameter learning of logic programs for symbolic-statistical modeling. J Artif Intell Res 15:391–454

    Article  MathSciNet  MATH  Google Scholar 

  • Sato T, Kameya Y, Zhou NF (2005) Generative modeling with failure in PRISM. In: International joint conference on artificial intelligence, pp 847–852

    Google Scholar 

  • Scott D, Krauss P (1966) Assigning probabilities to logical formulas. In: Suppes Hintikka (ed) Aspects of inductive logic. North-Holland, Amsterdam, pp 219–264

    Chapter  Google Scholar 

  • Staker R (2002) Reasoning in expressive description logics using belief networks. International conference on information and knowledge engineering. Las Vegas, USA, pp 489–495

    Google Scholar 

  • Suciu D, Oiteanu D, Ré C, Koch C (2011) Probabilistic databases. Morgan & Claypool Publishers, San Rafael

    Book  MATH  Google Scholar 

  • Taghipour N, Fierens D, Van den Broeck G, Davis J, Blockeel H (2013) Completeness results for lifted variable elimination. International conference on artificial intelligence and statistics (AISTATS). Scottsdale, USA, pp 572–580

    Google Scholar 

  • Taskar B, Abbeel P, Wong MF, Koller D (2007) Relational Markov networks. In: Getoor L, Taskar B (eds) Introduction to statistical relational learning. MIT Press, Cambridge, pp 175–199

    Google Scholar 

  • Thrun S (2000) Towards programming tools for robots that integrate probabilistic computation and learning. In: IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  • Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. Conference of the North American chapter of the association for computational linguistics on human language technology 1:173–180

    Google Scholar 

  • Tran D, Hoffman MD, Saurous RA, Brevdo E, Murphy K, Blei DM (2017) Deep probabilistic programming. In: International conference on learning representations

    Google Scholar 

  • Van den Broeck G (2011) On the completeness of first-order knowledge compilation for lifted probabilistic inference. In: Neural processing information systems, pp 1386–1394

    Google Scholar 

  • Van den Broeck G, Suciu D (2017) Query processing on probabilistic data: a survey. Found Trends Databases 7:197–341

    Article  MATH  Google Scholar 

  • Van den Broeck G, Wannes M, Darwiche A (2014) Skolemization for weighted first-order model counting. In: International conference on principles of knowledge representation and reasoning, pp 111–120

    Google Scholar 

  • Van Gelder A, Ross KA, Schlipf JS (1991) The well-founded semantics for general logic programs. J Assoc Comput Mach 38(3):620–650

    MathSciNet  MATH  Google Scholar 

  • Vennekens J, Verbaeten S, Bruynooghe M (2004) Logic programs with annotated disjunctions. In: Logic programming - ICLP. LNCS, vol 3132. Springer, Berlin, pp 431–445

    Google Scholar 

  • Vennekens J, Denecker M, Bruynoogue M (2009) CP-logic: a language of causal probabilistic events and its relation to logic programming. Theory Pract Log Program 9(3):245–308

    Article  MathSciNet  MATH  Google Scholar 

  • Wellman MP, Breese JS, Goldman RP (1992) From knowledge bases to decision models. Knowl Eng Rev 7(1):35–53

    Article  Google Scholar 

  • Wood F, van de Meent JW, Mansinghka V (2014) A new approach to probabilistic programming inference. In: International conference on artificial intelligence and statistics, pp 1024–1032

    Google Scholar 

  • Wu Y, Li L, Russell S, Bodik R (2016) Swift: compiled inference for probabilistic programming languages. In: International joint conference on artificial intelligence (IJCAI)

    Google Scholar 

  • Yelland PM (1999) Market analysis using a combination of Bayesian networks and description logics. Technical report SMLI TR-99-78, Sun Microsystems Laboratories

    Google Scholar 

  • Yones HLS, Littman ML (2004) PPDDL 1.0: an extension to PDDL for expressing planning domains with probabilistic effects. Technical report CMU-CS-04-167, Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

Download references

Acknowledgements

The author was partially supported by CNPq (grant 308433/2014-9). This work was partially supported by FAPESP (grant 2016/18841-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Gagliardi Cozman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cozman, F.G. (2020). Languages for Probabilistic Modeling Over Structured and Relational Domains. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06167-8_9

Download citation

Publish with us

Policies and ethics