Skip to main content

Formal Concept Analysis: From Knowledge Discovery to Knowledge Processing

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

In this chapter, we introduce Formal Concept Analysis (FCA) and some of its extensions. FCA is a formalism based on lattice theory aimed at data analysis and knowledge processing. FCA allows the design of so-called concept lattices from binary and complex data. These concept lattices provide a realistic basis for knowledge engineering and the design of knowledge-based systems. Indeed, FCA is closely related to knowledge discovery in databases, knowledge representation and reasoning. Accordingly, FCA supports a wide range of complex and intelligent tasks among which classification, information retrieval, recommendation, network analysis, software engineering and data management. Finally, FCA is used in many applications demonstrating its growing importance in data and knowledge sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://conexp.sourceforge.net/.

  2. 2.

    https://latviz.loria.fr/.

  3. 3.

    http://www.upriss.org.uk/fca/fca.html.

  4. 4.

    http://dataqual.engees.unistra.fr/logiciels/rcaExplore.

  5. 5.

    http://www.iro.umontreal.ca/~galicia/.

  6. 6.

    http://dataqual.engees.unistra.fr/logiciels/rcaExplore.

References

  • Aboud NA, Arévalo G, Falleri J, Huchard M, Tibermacine C, Urtado C, Vauttier S (2009) Automated architectural component classification using concept lattices. In: joint working IEEE/IFIP conference on software architecture (WICSA/ECSA), pp 21–30

    Google Scholar 

  • Akhmatnurov M, Ignatov, DI (2015) Context-aware recommender system based on boolean matrix factorisation. In: Proceedings of the twelfth international conference on concept lattices and their applications (CLA), CEUR workshop proceedings, vol 1466, pp 99–110

    Google Scholar 

  • Alam M, Buzmakov A, Codocedo V, Napoli A (2015) Mining definitions from RDF annotations using formal concept analysis. In: Proceedings of the twenty-fourth international joint conference on artificial intelligence, (IJCAI). AAAI Press, pp 823–829

    Google Scholar 

  • Alam M, Le TNN, Napoli A (2016) LatViz: a new practical tool for performing interactive exploration over concept lattices. In: Proceedings of the thirteenth international conference on concept lattices and their applications (CLA), CEUR workshop proceedings, vol 1624, pp 9–20

    Google Scholar 

  • Allard P, Ferré S, Ridoux O (2010) Discovering functional dependencies and association rules by navigating in a lattice of OLAP views. In: Proceedings of the 7th international conference on concept lattices and their applications (CLA), CEUR workshop proceedings, vol 672, pp 199–210

    Google Scholar 

  • Azmeh Z, Driss M, Hamoui F, Huchard M, Moha N, Tibermacine C (2011) Selection of composable web services driven by user requirements. In: IEEE international conference on web services (ICWS), pp. 395–402

    Google Scholar 

  • Baader F, Distel F (2008) A finite basis for the set of EL-implications holding in a finite model, vol 4933. Springer, Berlin, pp 46–61

    MATH  Google Scholar 

  • Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (eds) (2003) The description logic handbook. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Baader F, Ganter B, Sertkaya B, Sattler U (2007) Completing description logic knowledge bases using formal concept analysis. In: Proceedings of the 20th international joint conference on artificial intelligence (IJCAI), pp 230–235

    Google Scholar 

  • Babin MA, Kuznetsov SO (2012) Approximating concept stability. In: Proceedings of the 10th international conference on formal concept analysis (ICFCA). LNCS, vol 7228. Springer, pp 7–15

    Google Scholar 

  • Babin MA, Kuznetsov SO (2013) Computing premises of a minimal cover of functional dependencies is intractable. Discret Appl Math 161(6):742–749

    Article  MathSciNet  MATH  Google Scholar 

  • Baixeries J, Kaytoue M, Napoli A (2013) Computing similarity dependencies with pattern structures. In: Proceedings of the 10th international conference on concept lattices and their applications (CLA), CEUR workshop proceedings, vol 1062, pp 33–44

    Google Scholar 

  • Baixeries J, Kaytoue M, Napoli A (2014) Characterizing functional dependencies in formal concept analysis with pattern structures. Ann Math Artif Intell 72(1–2):129–149

    Article  MathSciNet  MATH  Google Scholar 

  • Barbut M, Monjardet B (1970) Ordre et classification: algèbre et combinatoire. Hachette, Paris

    MATH  Google Scholar 

  • Bartel H-G, Bruggemann R (1998) Application of formal concept analysis to structure-activity relationships. Fresenius J Anal Chem 361:23–38

    Article  Google Scholar 

  • Bastide Y, Taouil R, Pasquier N, Stumme G, Lakhal L (2000) Mining frequent patterns with counting inference. SIGKDD Explor Newsl 2(2):66–75

    Article  MATH  Google Scholar 

  • Becker P (2004) Numerical analysis in conceptual systems with ToscanaJ. In: Proceedings of the second international conference on formal concept analysis (ICFCA). LNCS, vol 2961. Springer, pp 96–103

    Google Scholar 

  • Bedel O, Ferré S, Ridoux O (2008) Handling spatial relations in logical concept analysis to explore geographical data. In: Proceedings of the 6th international conference on formal concept analysis (ICFCA). LNCS, vol 4933. Springer, pp 241–257

    Google Scholar 

  • Belfodil A, Kuznetsov SO, Robardet C, Kaytoue M (2017) Mining convex polygon patterns with formal concept analysis. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI), pp 1425–1432

    Google Scholar 

  • Belohlávek R (2004) Concept lattices and order in fuzzy logic. Ann Pure Appl Log 128(1–3):277–298

    Article  MathSciNet  MATH  Google Scholar 

  • Belohlávek R (2008) Relational data, formal concept analysis, and graded attributes. Handbook of research on fuzzy information processing in databases. IGI Global, pp 462–489

    Google Scholar 

  • Belohlávek R (2011) What is a fuzzy concept lattice? (II). In: Proceedings of the 13th international conference on rough sets, fuzzy sets, data mining and granular computing (RSFDGrC). LNCS, vol 6743. Springer, pp 19–26

    Google Scholar 

  • Belohlávek R, Vychodil V (2005) What is a fuzzy concept lattice? Proceedings of the twelfth international conference on concept lattices and their applications (CLA), pp 34–45

    Google Scholar 

  • Bendaoud R, Napoli A, Toussaint Y (2008) Formal concept analysis: a unified framework for building and refining ontologies. In: Proceedings of the 16th international conference on knowledge engineering and knowledge management (EKAW), pp 156–171

    Google Scholar 

  • Berry A, Gutierrez A, Huchard M, Napoli A, Sigayret A (2014) Hermes: a simple and efficient algorithm for building the AOC-poset of a binary relation. Ann Math Artif Intell 72(1–2):45–71

    Article  MathSciNet  MATH  Google Scholar 

  • Bertet K, Monjardet B (2010) The multiple facets of the canonical direct unit implicational basis. Theor Comput Sci 411(22–24):2155–2166

    Article  MathSciNet  MATH  Google Scholar 

  • Blinova VG, Dobrynin DA, Finn VK, Kuznetsov SO, Pankratova ES (2003) Toxicology analysis by means of the JSM-method. Bioinformatics 19(10):1201–1207

    Article  Google Scholar 

  • Borchmann D, Hanika T (2017) Individuality in social networks. Formal concept analysis of social networks. Springer, Berlin, pp 19–40

    Google Scholar 

  • Borchmann D, Distel F, Kriegel F (2016) Axiomatisation of general concept inclusions from finite interpretations. J Appl Non-Class Log 26(1):1–46

    Article  MathSciNet  MATH  Google Scholar 

  • Bosc G, Boulicaut J-F, Raïssi C, Kaytoue M (2017) Anytime discovery of a diverse set of patterns with Monte Carlo tree search. Data mining and knowledge discovery (In press)

    Google Scholar 

  • Bourneuf L, Nicolas, J (2017) FCA in a logical programming setting for visualization-oriented graph compression. In: Proceedings of the 14th international conference on formal concept analysis (ICFCA). LNCS, vol 10308, pp 89–105

    Google Scholar 

  • Bruno M, Canfora G, Penta MD, Scognamiglio R (2005) An approach to support web service classification and annotation. In: IEEE international conference on e-technology, e-commerce, and e-services (EEE), pp 138–143

    Google Scholar 

  • Buzmakov A, Kuznetsov SO, Napoli A (2014) Scalable estimates of concept stability, vol 8478. Springer, Berlin, pp 157–172

    MATH  Google Scholar 

  • Buzmakov A, Kuznetsov SO, Napoli A (2015) Revisiting pattern structure projections, vol 9113. Springer, Berlin, pp 200–215

    MATH  Google Scholar 

  • Buzmakov A, Egho E, Jay N, Kuznetsov SO, Napoli A, Raïssi C (2016) On mining complex sequential data by means of FCA and pattern structures. Int J Gen Syst 45(2):135–159

    Article  MathSciNet  MATH  Google Scholar 

  • Buzmakov A, Kuznetsov SO, Napoli A (2017) Efficient mining of subsample-stable graph patterns. In: IEEE international conference on data mining (ICDM), pp 757–762

    Google Scholar 

  • Cabrera IP, Cordero P, Ojeda-Aciego M (2017) Galois connections in computational intelligence: a short survey. In: IEEE symposium series on computational intelligence (SSCI), IEEE, pp 1–7

    Google Scholar 

  • Carbonnel J, Huchard M, Miralles A, Nebut C (2017a) Feature model composition assisted by formal concept analysis. In: Proceedings of the 12th international conference on evaluation of novel approaches to software engineering (ENASE), pp 27–37

    Google Scholar 

  • Carbonnel J, Huchard M, Nebut C (2017b) analyzing variability in product families through canonical feature diagrams. In: The 29th international conference on software engineering and knowledge engineering (SEKE), pp 185–190

    Google Scholar 

  • Carpineto C, Romano G (1996) A lattice conceptual clustering system and its application to browsing retrieval. Mach Learn 24(2):95–122

    Google Scholar 

  • Carpineto C, Romano G (2004) Concept data analysis: theory and applications. Wiley, Chichester (UK)

    Book  MATH  Google Scholar 

  • Cellier P, Ducassé M, Ferré S, Ridoux O (2008) Formal concept analysis enhances fault localization in software. In: Proceedings of the 6th international conference on formal concept analysis (ICFCA). LNCS, vol 4933. Springer, pp 273–288

    Google Scholar 

  • Cerf L, Besson J, Robardet C, Boulicaut J-F (2009) Closed patterns meet n-ary relations. ACM Trans Knowl Discov Data 3(1):1–36

    Article  Google Scholar 

  • Chaudron L, Maille N (2000) Generalized formal concept analysis. In: Proceedings of the 8th international conference on conceptual structures (ICCS). LNCS, vol 1867. Springer, pp 357–370

    Google Scholar 

  • Chekol MW, Euzenat J, Genevès P, Layaïda N (2012) SPARQL query containment under RDFS entailment regime. In: Proceedings of the 6th international joint conference on automated reasoning (IJCAR), vol 7364. Springer, pp 134–148

    Google Scholar 

  • Cimiano P, Hotho A, Staab S (2005) Learning concept hierarchies from text corpora using formal concept analysis. J Artif Intell Res 24:305–339

    Article  MATH  Google Scholar 

  • Codocedo V, Napoli A (2014a) A proposition for combining pattern structures an relational concept analysis. In: Proceedings of the 12th international conference on formal concept analysis (ICFCA), vol 8478. Springer, pp 96–111

    Google Scholar 

  • Codocedo V, Napoli A (2014b) Lattice-based biclustering using partition pattern structures. In: 21st European conference on artificial intelligence (ECAI). IOS Press, pp 213–218

    Google Scholar 

  • Codocedo V, Napoli A (2015) Formal concept analysis and information retrieval–a survey. In: Proceedings of the 13th international conference on formal concept analysis (ICFCA). LNCS, vol 9113. Springer, pp 61–77

    Google Scholar 

  • Codocedo V, Lykourentzou I, Napoli A (2014) A semantic approach to concept lattice-based information retrieval. Ann Math Artif Intell 72(1–2):169–195

    Article  MathSciNet  MATH  Google Scholar 

  • Codocedo V, Baixeries J, Kaytoue M, Napoli A (2016) Characterization of order-like dependencies with formal concept analysis. In: Proceedings of the thirteenth international conference on concept lattices and their applications (CLA), CEUR workshop proceedings, vol 1624, pp 123–134

    Google Scholar 

  • Coste F, Garet G, Groisillier A, Nicolas J, Tonon T (2014) Automated enzyme classification by formal concept analysis. In: Proceedings of the 12th international conference on formal concept analysis (ICFCA). LNCS, vol 8478. Springer, pp 235–250

    Google Scholar 

  • Dao M, Huchard M, Hacene MR, Roume C, Valtchev P (2004) Improving generalization level in UML models iterative cross generalization in practice. In: Proceedings of the 12th international conference on conceptual structures (ICCS), pp 346–360

    Google Scholar 

  • Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Distel F, Sertkaya B (2011) On the complexity of enumerating pseudo-intents. Discret Appl Math 159(6):450–466

    Article  MathSciNet  MATH  Google Scholar 

  • Dolques X, Huchard M, Nebut C, Reitz P (2010) Learning transformation rules from transformation examples: an approach based on relational concept analysis. In: Workshop proceedings of the 14th IEEE international enterprise distributed object computing conference (EDOCW), pp 27–32

    Google Scholar 

  • Dolques X, Le Ber F, Huchard M, Grac C (2016) Performance-friendly rule extraction in large water data-sets with AOC posets and relational concept analysis. Int J Gen Syst 45(2):187–210

    Article  MathSciNet  MATH  Google Scholar 

  • du Boucher-Ryan P, Bridge DG (2006) Collaborative recommending using formal concept analysis. Knowl-Based Syst 19(5):309–315

    Article  Google Scholar 

  • Ducrou J, Vormbrock B, Eklund PW (2006) FCA-based browsing and searching of a collection of images. In: Proceedings of the 14th international conference on conceptual structures (ICCS). LNCS, vol 4068. Springer, pp 203–214

    Google Scholar 

  • Dzeroski S, Lavrac N (eds) (2001) Relational data mining. Springer, Berlin

    MATH  Google Scholar 

  • Eklund PW, Groh B, Stumme G, Wille R (2000) A contextual-logic extension of TOSCANA. In: Proceedings of the 8th international conference on conceptual structures (ICCS), LNCS 1867. Springer, pp 453–467

    Google Scholar 

  • Eklund PW, Ducrou J, Brawn P (2004) Concept lattices for information visualization: can novices read line-diagrams? In: Proceedings of the second international conference on formal concept analysis (ICFCA). LNCS, vol 2961. Springer, pp 57–73

    Google Scholar 

  • Falk I, Gardent C (2014) Combining formal concept analysis and translation to assign frames and semantic role sets to French verbs. Ann Math Artif Intell 70(1–2):123–150

    Article  MathSciNet  MATH  Google Scholar 

  • Falleri J, Huchard M, Nebut C (2008) A generic approach for class model normalization. In: 23rd IEEE/ACM international conference on automated software engineering (ASE), pp 431–434

    Google Scholar 

  • Ferré S (2009) Camelis: a logical information system to organize and browse a collection of documents. Int J Gen Syst 38(4):379–403

    Article  MATH  Google Scholar 

  • Ferré S (2010) Conceptual navigation in RDF graphs with SPARQL-like queries. In: Proceedings of the 8th international conference on formal concept analysis (ICFCA), vol 5986. Springer, pp 193–208

    Google Scholar 

  • Ferré S (2015) A proposal for extending formal concept analysis to knowledge graphs. In: Proceedings of the 13th international conference on formal concept analysis (ICFCA), vol 9113. Springer, pp 271–286

    Google Scholar 

  • Ferré S (2017) Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural language. Semant Web: Interoperability Usability Appl 8(3):405–418

    Article  Google Scholar 

  • Ferré S, Cellier P (2016) Graph-FCA in practice. In: Proceedings of the 22nd international conference on conceptual structures (ICCS). LNCS, vol 9717. Springer, pp 107–121

    Google Scholar 

  • Ferré S, King RD (2004) BLID: an application of logical information systems to bioinformatics. In: Proceedings of the 2nd international conference on formal concept analysis (ICFCA), vol 2961. Springer, pp 47–54

    Google Scholar 

  • Ferré S, Ridoux O (2000) A logical generalization of formal concept analysis. In: Proceedings of the 10th international conference on conceptual structures (ICCS). LNCS, vol 1867. Springer, pp 371–384

    Google Scholar 

  • Ferré S, Ridoux O (2001) A framework for developing embeddable customized logics. Selected papers of the 1th international workshop on logic based program synthesis and transformation (LOPSTR). LNCS, vol 2372. Springer, pp 191–215

    Google Scholar 

  • Ferré S, Ridoux O (2004) An introduction to logical information systems. Inf Process Manag 40(3):383–419

    Article  MATH  Google Scholar 

  • Ferré S, Allard P, Ridoux O (2012) Cubes of concepts: multi-dimensional exploration of multi-valued contexts. In: Proceedings of the 10th international conference on formal concept analysis (ICFCA), vol 7228. Springer, pp 112–127

    Google Scholar 

  • Foret A, Ferré S (2010) On categorial grammars as logical information systems. In: Proceedings of the 8th international conference on formal concept analysis (ICFCA). LNCS, vol 5986. Springer, pp 225–240

    Google Scholar 

  • Freeman LC, White DR (1993) Using Galois lattices to represent network data. Sociol Methodol 23:127–146

    Article  Google Scholar 

  • Ganter B (2010) Two basic algorithms in concept analysis. In: Proceedings of the 8th international conference on formal concept analysis (ICFCA). Lecture notes in computer science, vol 5986. Springer, pp 312–340

    Google Scholar 

  • Ganter, B, Kuznetsov SO (2001) Pattern structures and their projections. In: International conference on conceptual structures (ICCS). LNCS 2120, pp 129–142

    Google Scholar 

  • Ganter B, Obiedkov SA (2004) Implications in triadic formal contexts. In: Proceedings of the 12th international conference on conceptual structures (ICCS). Lecture notes in computer science, vol 3127. Springer, pp 186–195

    Google Scholar 

  • Ganter B, Obiedkov SA (2016) Conceptual exploration. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ganter B, Wille R (1999) Formal concept analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ganter B, Stumme G, Wille R (eds) (2005) Formal concept analysis, foundations and applications. LNCS, vol 3626. Springer

    Google Scholar 

  • García-Pardo F, Cabrera IP, Cordero P, Ojeda-Aciego M (2013) On Galois connections and soft computing. In: Proceedings of the 12th international work-conference on artificial neural networks (IWANN). LNCS, vol 7903. Springer, pp 224–235

    Google Scholar 

  • Gardiner EJ, Gillet VJ (2015) Perspectives on knowledge discovery algorithms recently introduced in chemoinformatics: rough set theory, association rule mining, emerging patterns, and formal concept analysis. J Chem Inf Model 55(9):1781–1803

    Article  Google Scholar 

  • Godin R, Mili H (1993) Building and maintaining analysis-level class hierarchies using Galois lattices. In: Proceedings of the eighth conference on object-oriented programming systems, languages, and applications (OOPSLA), pp 394–410

    Google Scholar 

  • Godin R, Missaoui R, April A (1993) Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. Int J Man-Mach Stud 38(5):747–767

    Article  Google Scholar 

  • Grissa D, Comte B, Pujos-Guillot E, Napoli A (2016) A hybrid knowledge discovery approach for mining predictive biomarkers in metabolomic data. In: Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML-PKDD). LNCS, vol 9851. Springer, pp 572–587

    Google Scholar 

  • Guédi AO, Miralles A, Huchard M, Nebut C (2013) A practical application of relational concept analysis to class model factorization: lessons learned from a thematic information system. In: Proceedings of the tenth international conference on concept lattices and their applications (CLA), pp 9–20

    Google Scholar 

  • Guigues J-L, Duquenne V (1986) Famile minimale d’implications informatives resultant d’un tableau de données binaire. Mathematique, Informatique et Sciences Humaines 95:5–18

    Google Scholar 

  • Hahn G, Tardif C (1997) Graph homomorphisms: structure and symmetry. Graph symmetry. Springer, Berlin, pp 107–166

    Book  MATH  Google Scholar 

  • Hitzler P, Krötzsch M, Rudolph S (2009) Foundations of semantic web technologies. Chapman & Hall/CRC

    Google Scholar 

  • Huchard M, Rouane-Hacene M, Roume C, Valtchev P (2007) Relational concept discovery in structured datasets. Ann Math Artif Intell 49(1–4):39–76

    Article  MathSciNet  MATH  Google Scholar 

  • Ignatov DI, Gnatyshak DV, Kuznetsov SO, Mirkin BG (2015) Triadic formal concept analysis and triclustering: searching for optimal patterns. Mach Learn 101(1–3):271–302

    Article  MathSciNet  MATH  Google Scholar 

  • Ignatov DI, Semenov A, Komissarova D, Gnatyshak DV (2017) Multimodal clustering for community detection. Formal Concept analysis of social networks. Springer, Berlin, pp 59–96

    Google Scholar 

  • Jäschke R, Hotho A, Schmitz C, Ganter B, Stumme G (2006) TRIAS - an algorithm for mining iceberg tri-lattices. In: Proceedings of the 6th IEEE International conference on data mining (ICDM), pp 907–911

    Google Scholar 

  • Ji L, Tan K-L, Tung AKH (2006) Mining frequent closed cubes in 3D datasets. In: Proceedings of the 32nd international conference on very large data bases (VLDB), pp 811–822. ACM

    Google Scholar 

  • Kaytoue M, Assaghir Z, Napoli A, Kuznetsov SO (2010) Embedding tolerance relations in FCA: an application in information fusion. In: Proceedings of the 19th ACM conference on information and knowledge management (CIKM), pp 1689–1692. ACM

    Google Scholar 

  • Kaytoue M, Kuznetsov SO, Napoli A (2011a) Biclustering numerical data in formal concept analysis. In: Proceedings of the 9th international conference on formal concept analysis (ICFCA). LNCS, vol 6628. Springer, pp 135–150

    Google Scholar 

  • Kaytoue M, Kuznetsov SO, Napoli A (2011b) Revisiting numerical pattern mining with formal concept analysis. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI), pp 1342–1347. IJCAI/AAAI

    Google Scholar 

  • Kaytoue M, Kuznetsov SO, Napoli A, Duplessis S (2011c) Mining gene expression data with pattern structures in formal concept analysis. Inf Sci 181(10):1989–2001

    Article  MathSciNet  Google Scholar 

  • Kaytoue M, Kuznetsov SO, Macko J, Napoli A (2014) Biclustering meets triadic concept analysis. Ann Math Artif Intell 70(1–2):55–79

    Article  MathSciNet  MATH  Google Scholar 

  • Kaytoue M, Plantevit M, Zimmermann A, Bendimerad AA, Robardet C (2017) Exceptional contextual subgraph mining. Mach Learn 106(8):1171–1211

    Article  MathSciNet  MATH  Google Scholar 

  • Kirchberg M, Leonardi E, Tan YS, Link S, Ko RKL, Lee B (2012) Formal concept discovery in semantic web data. In: Proceedings of the 10th international conference on formal concept analysis (ICFCA). LNCS, vol 7278. Springer, pp 164–179

    Google Scholar 

  • Kötters J (2013) Concept lattices of a relational structure. In: Proceedings of the 20th international conference on conceptual structures (ICCS). LNCS, vol 7735. Springer, pp 301–310

    Google Scholar 

  • Kourie DG, Obiedkov SA, Watson BW, van der Merwe D (2009) An incremental algorithm to construct a lattice of set intersections. Sci Comput Program 74(3):128–142

    Article  MathSciNet  MATH  Google Scholar 

  • Kriegel F (2017) Acquisition of terminological knowledge from social networks in description logic. Formal concept analysis of social networks. Springer, Berlin, pp 97–142

    Google Scholar 

  • Kuznetsov SO (1999) Learning of simple conceptual graphs from positive and negative examples. In: Proceedings of the third european conference on principles of data mining and knowledge discovery (PKDD). LNCS, vol 1704. Springer, pp 384–391

    Google Scholar 

  • Kuznetsov SO (2001) Machine learning on the basis of formal concept analysis. Autom Remote Control 62(10):1543–1564

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov SO (2004) On the intractability of computing the Duquenne-Guigues base. J Univers Comput Sci 10(8):927–933

    MathSciNet  MATH  Google Scholar 

  • Kuznetsov SO (2007) On stability of a formal concept. Ann Math Artif Intell 49(1–4):101–115

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov SO (2009) Pattern structures for analyzing complex data. In: Proceedings of the 12th international conference on rough sets, fuzzy sets, data mining and granular computing (RSFDGrC), vol 5908. Springer, pp 33–44

    Google Scholar 

  • Kuznetsov SO (2013) Fitting pattern structures to knowledge discovery in big data. In: Proceedings of the 11th international conference on formal concept analysis (ICFCA), vol 7880. Springer, pp 254–266

    Google Scholar 

  • Kuznetsov S, Obiedkov S (2002) Comparing performance of algorithms for generating concept lattices. J Exp Theor Artif Intell 14(2/3):189–216

    Article  MATH  Google Scholar 

  • Kuznetsov SO, Makhalova TP (2018) On interestingness measures of formal concepts. Inf Sci 442–443:202–219

    Article  MathSciNet  Google Scholar 

  • Kuznetsov SO, Poelmans J (2013) Knowledge representation and processing with formal concept analysis. Data Min Knowl Discov (Wiley) 3(3):200–215

    Article  Google Scholar 

  • Kuznetsov SO, Samokhin MV (2005) Learning closed sets of labeled graphs for chemical applications. In: Proceedings of 15th international conference on inductive logic programming (ILP). LNCS, vol 3625. Springer, pp 190–208

    Google Scholar 

  • Kuznetsov SO, Obiedkov SA, Roth C (2007) Reducing the representation complexity of lattice-based taxonomies. In: Proceedings of the 15th international conference on conceptual structures (ICCS). LNCS, vol 4604. Springer, pp 241–254

    Google Scholar 

  • Leeuwenberg A, Buzmakov A, Toussaint Y, Napoli A (2015) Exploring pattern structures of syntactic trees for relation extraction, vol 9113. Springer, pp 153–168

    Google Scholar 

  • Lehmann F, Wille R (1995) A Triadic approach to formal concept analysis, vol 954. Springer, Berlin, pp 32–43

    Google Scholar 

  • Lindig C (1995) Concept-based component retrieval. In: IJCAI-95 workshop: formal approaches to the reuse of plans, proofs, and programs, pp 21–25

    Google Scholar 

  • Liquiere M, Sallantin J (1998) Structural machine learning with Galois lattice and graphs. In: Proceedings of the fifteenth international conference on machine learning (ICML), pp 305–313

    Google Scholar 

  • Métivier J, Lepailleur A, Buzmakov A, Poezevara G, Crémilleux B, Kuznetsov SO, Goff JL, Napoli A, Bureau R, Cuissart B (2015) Discovering Structural alerts for mutagenicity using stable emerging molecular patterns. J Chem Inf Model 55(5):925–940

    Article  Google Scholar 

  • Mimouni N, Nazarenko A, Salotti S (2015) A conceptual approach for relational IR: application to legal collections. In: Proceedings of the 13th international conference on formal concept analysis (ICFCA), pp 303–318

    Google Scholar 

  • Missaoui R, Kuznetsov SO, Obiedkov SA (eds) (2017) Formal concept analysis of social networks. Springer, Berlin

    MATH  Google Scholar 

  • Muggleton S, De Raedt L (1994) Inductive logic programming: theory and methods. J Log Program 19–20:629–679

    Article  MathSciNet  MATH  Google Scholar 

  • Nica C, Braud A, Le Ber F (2017) Hierarchies of weighted closed partially-ordered patterns for enhancing sequential data analysis. In: Proceedings of the 14th international conference on formal concept analysis (ICFCA), pp 138–154

    Google Scholar 

  • Obiedkov SA, Duquenne V (2007) Attribute-incremental construction of the canonical implication basis. Ann Math Artif Intell 49(1–4):77–99

    Article  MathSciNet  MATH  Google Scholar 

  • Obiedkov SA, Kourie DG, Eloff JHP (2009) Building access control models with attribute exploration. Comput Secur 28(1–2):2–7

    Article  Google Scholar 

  • Outrata J, Vychodil V (2012) Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. Inf Sci 185(1):114–127

    Article  MathSciNet  MATH  Google Scholar 

  • Padioleau Y, Ridoux O (2003) A logic file system. In: USENIX annual technical conference, pp 99–112

    Google Scholar 

  • Poelmans J, Ignatov DI, Kuznetsov SO, Dedene G (2013) Formal concept analysis in knowledge processing: a survey on applications. Expert Syst Appl 40(16):6538–6560

    Article  Google Scholar 

  • Priss U (2011) Unix systems monitoring with FCA. In: Proceedings of the 19th international conference on conceptual structures (ICCS). LNCS, vol 6828. Springer, pp 243–256

    Google Scholar 

  • Priss U (2013) Representing median networks with concept lattices. In: Proceedings of the 20th international conference on conceptual structures (ICCS). LNCS, vol 7735. Springer, pp 311–321

    Google Scholar 

  • Quintero NY, Restrepo G (2017) Formal concept analysis applications in chemistry: from radionuclides and molecular structure to toxicity and diagnosis. Partial order concepts in applied sciences. Springer, pp 207–217

    Google Scholar 

  • Roth C (2017) Knowledge communities and socio-cognitive taxonomies. Formal concept analysis of social networks. Springer, Berlin, pp 1–18

    Google Scholar 

  • Rouane-Hacene M, Huchard M, Napoli A, Valtchev P (2007). A proposal for combining formal concept analysis and description logics for mining relational data. In: Proceedings of the 5th international conference on formal concept analysis (ICFCA 2007). LNAI, vol 4390. Springer, pp 51–65

    Google Scholar 

  • Rouane-Hacene M, Huchard M, Napoli A, Valtchev P (2010) Using formal concept analysis for discovering knowledge patterns. In: Proceedings of the 7th international conference on concept lattices and their applications (ICFCA), pp 223–234

    Google Scholar 

  • Rouane-Hacene M, Huchard M, Napoli A, Valtchev P (2013) Relational concept analysis: mining concept lattices from multi-relational data. Ann Math Artif Intell 67(1):81–108

    Article  MathSciNet  MATH  Google Scholar 

  • Rudolph S (2004) Exploring relational structures via FLE. In: Proceedings of the 12th international conference on conceptual structures (ICCS), LNCS, vol 3127. Springer, pp 196–212

    Google Scholar 

  • Rudolph S, Sacarea C, Troanca D (2015) Towards a navigation paradigm for triadic concepts. In: Proceedings of the 13th international conference on formal concept analysis (ICFCA), LNCS, vol 9113. Springer, pp 252–267

    Google Scholar 

  • Saada H, Huchard M, Liquiere M, Nebut C (2014) Learning model transformation patterns using graph generalization. In: Proceedings of the eleventh international conference on concept lattices and their applications (CLA), pp 11–22

    Google Scholar 

  • Sahraoui HA, Melo WL, Lounis H, Dumont F (1997) Applying concept formation methods to object identification in procedural code. In: International conference on automated software engineering (ASE), pp 210–218

    Google Scholar 

  • Sertkaya B (2009) OntoComP: a protégé plugin for completing OWL ontologies. In: Proceedings of the 6th European semantic web conference (ESWC). LNCS, vol 5554. Springer, pp 898–902

    Google Scholar 

  • Sertkaya B (2010) A survey on how description logic ontologies benefit from FCA. In: Proceedings of the 7th international conference on concept lattices and their applications (CLA), CEUR workshop proceedings, vol 672, pp 2–21

    Google Scholar 

  • Soldano H, Santini G, Bouthinon D (2017) Formal concept analysis of attributed networks. Formal concept analysis of social networks. Springer, Berlin, pp 143–170

    Book  Google Scholar 

  • Sowa J (1984) Conceptual structures. Information processing in man and machine, Addison-Wesley, Reading, US

    MATH  Google Scholar 

  • Staab S, Studer R (eds) (2009) Handbook on ontologies, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Stahl T, Voelter M, Czarnecki K (2006) Model-driven software development: technology, engineering, management. Wiley, New York

    Google Scholar 

  • Stumme G, Taouil R, Bastide Y, Pasquier N, Lakhal L (2002) Computing iceberg concept lattices with Titanic. Data Knowl Eng 42(2):189–222

    Article  MATH  Google Scholar 

  • Szathmary L, Valtchev P, Napoli A, Godin R, Boc A, Makarenkov V (2014) A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes. Ann Math Artif Intell 70(1–2):81–105

    Article  MathSciNet  MATH  Google Scholar 

  • Tatti N, Moerchen F, Calders T (2014) Finding robust itemsets under subsampling. ACM Trans Database Syst 39(3):20:1–20:27

    Google Scholar 

  • Tilley T, Cole R, Becker P, Eklund PW (2005) A survey of formal concept analysis support for software engineering activities. Formal concept analysis, foundations and applications. LNCS 3626:250–271

    MATH  Google Scholar 

  • Uno T, Asai T, Uchida Y, Arimura H (2004) An efficient algorithm for enumerating closed patterns in transaction databases. In: Proceedings of the 7th international conference on discovery science (DS). LNCS, vol 3245. Springer, pp 16–31

    Google Scholar 

  • Valverde-Albacete FJ, Peláez-Moreno C (2017) A formal concept analysis look at the analysis of affiliation networks. Formal concept analysis of social networks. Springer, Berlin, pp 171–195

    MATH  Google Scholar 

  • van Deursen A, Kuipers T (1999) Identifying objects using cluster and concept analysis. In: Proceedings of the international conference on software engineering (ICSE), pp 246–255

    Google Scholar 

  • Völker J, Rudolph S (2008) Lexico-logical acquisition of OWL DL axioms. In: Proceedings of the 6th international conference on formal concept analysis (ICFCA), LNCS, vol 4933. Springer, pp 62–77

    Google Scholar 

  • Voutsadakis G (2002) Polyadic concept analysis. Order 19(3):295–304

    Article  MathSciNet  MATH  Google Scholar 

  • Wille R (2002) Why can concept lattices support knowledge discovery in databases? J Exp Theor Artif Intell 14(2/3):81–92

    Article  MATH  Google Scholar 

  • Wray T, Eklund PW (2011) Exploring the information space of cultural collections using formal concept analysis. In: Proceedings of the 9th international conference on formal concept analysis (ICFCA), LNCS, vol 6628. Springer, pp 251–266

    Google Scholar 

  • Zaki MJ (2005) Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans Knowl Data Eng 17(4):462–478

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Sergei O. Kuznetsov was supported by the Russian Science Foundation under grant 17-11-01294 and performed at National Research University Higher School of Economics, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Napoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferré, S., Huchard, M., Kaytoue, M., Kuznetsov, S.O., Napoli, A. (2020). Formal Concept Analysis: From Knowledge Discovery to Knowledge Processing. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06167-8_13

Download citation

Publish with us

Policies and ethics