Skip to main content

Case-Based Reasoning, Analogy, and Interpolation

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

This chapter presents several types of reasoning based on analogy and similarity. Case-based reasoning, presented in Sect. 2, consists in searching a case (where a case represents a problem-solving episode) similar to the problem to be solved and to adapt it to solve this problem. Section 3 is devoted to analogical reasoning and to recent developments based on analogical proportion. Interpolative reasoning, presented in Sect. 4 in the formal setting of fuzzy set representations, is another form of similarity-based reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is noteworthy that this differs from analogical proportions (presented in Sect. 3) for which these two ways to read the four terms of an analogy are equivalent, according to the “exchange of the means” property.

  2. 2.

    These indicators are also the building blocks of the view of similarity proposed by (Tversky 1977).

  3. 3.

    Or to find all the triples (abc) realizing that and then to make a vote, as in the k-nearest neighbor method. Empirical studies suggest that if we restrict ourselves to triples where c is a k-nearest neighbor (a, b being generally quite far) this does not really harm the results (Bounhas et al. 2017a).

  4. 4.

    Rather then seeing a fuzzy set as a set of elements close to its core value, similarity measures between fuzzy sets themselves can be defined, and then it is possible to give some meaning to the analogical proportion of the form \(A : A'\,{:}{:}\,B : B'\), but \(B'\) obtained this way does not have, in general, a reason to be compatible with the result of the generalized modus ponens as defined above. However, some choice of resemblance relations and of operators allows us to reconcile these two viewpoints; see for example (Bouchon-Meunier and Valverde 1999).

  5. 5.

    Gradual rules have been independently considered under the name of “topoi” in (Raccah 1996), from a cognitive perspective.

References

  • Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–58

    Article  Google Scholar 

  • Aha DW, Breslow LA, Muñoz-Avila H (2001) Conversational case-based reasoning. Appl Intell 14(1):9–32

    Article  MATH  Google Scholar 

  • Alchourrón CE, Gärdenfors P, Makinson D (1985) On the logic of theory change: partial meet functions for contraction and revision. J Symb Log 50:510–530

    Article  MATH  Google Scholar 

  • Bayoudh S, Miclet L, Delhay A (2007a) Learning by analogy: a classification rule for binary and nominal data. In: Veloso MM (ed) Proceedings of the 20th international joint conference on artificial intelligence (IJCAI 2007), Hyderabad, 6–12 January 2007. AAAI Press, pp 678–683

    Google Scholar 

  • Bayoudh S, Mouchère H, Miclet L, Anquetil É (2007b) Learning a classifier with very few examples: analogy-based and knowledge-based generation of new examples for character recognition. In: Kok JN, Koronacki J, de Mántaras RL, Matwin S, Mladenic D, Skowron A (eds) Proceedings of the 18th European conference on machine learning (ECML 2007) Warsaw, 17–21 September 2007. LNCS, vol 4701. Springer, Berlin, pp 527–534

    Google Scholar 

  • Becker JD (1969) The modeling of simple analogic and inductive processes in a semantic memory system. In: Proceedings of the 1st international joint conference on artificial intelligence (IJCAI’69), pp 655–668

    Google Scholar 

  • Begum S, Ahmed MU, Funk P, Xiong N, Folke M (2011) Case-based reasoning systems in the health sciences: a survey of recent trends and developments. IEEE Trans Syst Man Cybern Part C (Appl Rev) 41(4):421–434

    Article  Google Scholar 

  • Bellman RE, Kalaba R, Zadeh L (1966) Abstraction and pattern classification. J Math Anal Appl 13:1–7

    Article  MathSciNet  MATH  Google Scholar 

  • Bergmann R, Wilke W (1995) Building and refining abstract planning cases by change of representation language. J Artif Intell Res 3:53–118

    Article  Google Scholar 

  • Bichindaritz I, Marling C (2006) Case-based reasoning in the health sciences: what’s next? Artif Intell Med 36(2):127–135

    Article  Google Scholar 

  • Bouchon-Meunier B, Dubois D, Godo L, Prade H (1999) Fuzzy sets and possibility theory in approximate and plausible reasoning. In: Bezdek J, Dubois D, Prade H (eds) Fuzzy sets in approximate reasoning and information systems. The handbooks of fuzzy sets. Kluwer, Boston, pp 15–190

    Chapter  MATH  Google Scholar 

  • Bouchon-Meunier B, Valverde L (1999) A fuzzy approach to analogical reasoning. Soft Comput 3:141–147

    Article  Google Scholar 

  • Bounhas M, Prade H, Richard G (2017a) Analogy-based classifiers for nominal or numerical data. Int J Approx Reason 91:36–55

    Google Scholar 

  • Bounhas M, Prade H, Richard G (2017b) Oddness/evenness-based classifiers for Boolean or numerical data. Int J Approx Reason 82:81–100

    Google Scholar 

  • Brüninghaus S, Ashley K (2001) The role of information extraction for textual CBR. Case-based reasoning research and development, pp 74–89

    Google Scholar 

  • Carbonell JG (1983) Learning by analogy: formulating and generalizing plans from past experience. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning, an artificial intelligence approach. Morgan Kaufmann Inc., San Francisco, pp 137–161

    Google Scholar 

  • Carbonell JG (1986) Derivational analogy: a theory of reconstructive problem solving and expertise acquisition. Machine learning, vol 2. Morgan Kaufmann Inc., San Francisco, pp 371–392

    Google Scholar 

  • Chang L, Sattler U, Gu T (2014) Algorithm for adapting cases represented in a tractable description logic. In: Lamontagne L, Plaza E (eds) Case-based reasoning research and development, Proceedings of ICCBR-2014. Springer, Berlin, pp 63–78

    Google Scholar 

  • Cojan J, Lieber J (2008) Conservative adaptation in metric spaces. In: Althoff K-D, Bergmann R, Minor M, Hanft A (eds) ECCBR. Lecture notes in computer science, vol 5239. Springer, Berlin, pp 135–149

    Google Scholar 

  • Cojan J, Lieber J (2011) An algorithm for adapting cases represented in ALC. In: Walsh T (ed) IJCAI. IJCAI/AAAI, pp 2582–2589

    Google Scholar 

  • Cordier A, Fuchs B, Lieber J, Mille A (2007) Failure analysis for domain knowledge acquisition in a knowledge-intensive CBR system. In: Michael Richter RW (ed) Proceedings of the 7th international conference on case-based reasoning. LNAI. Springer, Berlin, pp 463–477

    Google Scholar 

  • Cordier A, Fuchs B, de Carvalho LL, Lieber J, Mille A (2008) Opportunistic acquisition of adaptation knowledge and cases - the IAKA approach. In: Althoff K-D, Bergmann R, Minor M, Hanft A (eds) Advances in case-based reasoning, Proceedings of the 9th European conference, ECCBR 2008, Trier, Germany, 1–4 September 2008. Lecture notes in computer science, vol 5239. Springer, Berlin, pp 150–164

    Google Scholar 

  • Cordier A, Dufour-Lussier V, Lieber J, Nauer E, Badra F, Cojan J, Gaillard E, Infante-Blanco L, Molli P, Napoli A, Skaf-Molli H (2014) Taaable: a case-based system for personalized cooking. In: Montani S, Jain LC (eds) Successful case-based reasoning applications-2. Studies in computational intelligence, vol 494. Springer, Berlin, pp 121–162

    Google Scholar 

  • Correa Beltran W, Prade H, Richard G (2016) Constructive solving of Raven’s IQ tests with analogical proportions. Int J Intell Syst 31(11):1072–1103

    Article  Google Scholar 

  • Couceiro M, Hug N, Prade H, Richard G (2017) Analogy-preserving functions: a way to extend Boolean samples. In: Sierra C (ed) Proceedings of the 26th international joint conference on artificial intelligence (IJCAI’17), Melbourne, 19–25 August 2017, pp 1575–1581

    Google Scholar 

  • Cox MT, Muñoz-Avila H, Bergmann R (2005) Case-based planning. Knowl Eng Rev 20(3):283–287

    Article  Google Scholar 

  • Craw S, Wiratunga N, Rowe R (2006) Learning adaptation knowledge to improve case-based reasoning. Artif Intell 170(16–17):1175–1192

    Article  MathSciNet  MATH  Google Scholar 

  • Cunningham P (2009) A taxonomy of similarity mechanisms for case-based reasoning. IEEE Trans Knowl Data Eng 21(11):1532–1543

    Article  Google Scholar 

  • d’Aquin M, Badra F, Lafrogne S, Lieber J, Napoli A, Szathmary L (2007) Case base mining for adaptation knowledge acquisition. In: Veloso MM (ed) IJCAI, pp 750–755

    Google Scholar 

  • Dave B, Schmitt G, Shih S-G, Bendel L, Faltings B, Smith I, Hua K, Bailey S, Ducruet J-M, Jent K (1995) Case-based spatial design reasoning. In: Haton J-P, Keane M, Manago M (eds) Advances in case-based reasoning - Second European workshop, EWCBR’94. LNCS, vol 984. Springer, Berlin, pp 198–210

    Google Scholar 

  • Davies TR, Russell SJ (1987) A logical approach to reasoning by analogy. In: Proceedings of the 10th international joint conference on artificial intelligence (IJCAI’87). Morgan Kaufmann, pp 264–270

    Google Scholar 

  • de Mántaras RL (1998) It Don’t Mean A Thing (If It Ain’t Got That Swing). In: Prade H (ed) Proceedings of the 13th European conference on artificial intelligence (ECAI-98), Brighton, United Kingdom, pp 694–696

    Google Scholar 

  • Dubois D, Esteva F, Garcia P, Godo L, de Mántaras RL, Prade H (1997a) Fuzzy modelling of case-based reasoning and decision. In: Leake DB, Plaza E (eds) Proceedings of the 2nd international conference on case-based reasoning research and development (ICCBR-97), Providence, RI, 25–27 July 1997. LNCS, vol 1266. Springer, Berlin, pp 599–610

    Google Scholar 

  • Dubois D, Esteva F, Garcia P, Godo L, Prade H (1997b) A logical approach to interpolation based on similarity relations. Int J Approx Reason 17:1–36

    Google Scholar 

  • Dubois D, Hüllermeier E, Prade H (2002) Fuzzy set-based methods in instance-based reasoning. IEEE Trans Fuzzy Syst 10:322–332

    Article  Google Scholar 

  • Dubois D, Prade H (1992) Gradual inference rules in approximate reasoning. Inf Sci 61:103–122

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1996) What are fuzzy rules and how to use them. Fuzzy Sets Syst 84:169–185

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1998) Similarity versus preference in fuzzy set-based logics. In: Orlowska E (ed) Modelling incomplete information: rough set analysis. Physica Verlag, Heidelberg, pp 441–461

    Chapter  Google Scholar 

  • Dufour-Lussier V, Le Ber F, Lieber J, Nauer E (2014) Automatic case acquisition from texts for process-oriented case-based reasoning. Inf Syst

    Google Scholar 

  • Evans T (1964) A heuristic program to solve geometry-analogy problems. In: Proceedings of the A.F.I.P. spring joint computer conference, vol 25, pp 5–16

    Google Scholar 

  • Falkenhainer B, Forbus KD, Gentner D (1989) The structure-mapping engine: algorithm and examples. Artif. Intell. 41(1):1–63

    Article  MATH  Google Scholar 

  • Federici S, Pirrelli V, Yvon F (1996) A dynamic approach to paradigm-driven analogy. In: Wermter S, Riloff E, Scheler G (eds) Connectionist, statistical, and symbolic approaches to learning for natural language processing. LNCS, vol 1040. Springer, Berlin, pp 385–398

    Google Scholar 

  • Forbus K, Usher J, Lovett A, Lockwood K, Wetzel J (2011) CogSketch: sketch understanding for cognitive science research and for education. Top Cogn Sci 3(4):648–666

    Article  Google Scholar 

  • Forbus KD, Ferguson RW, Lovett AM, Gentner D (2017) Extending SME to handle large-scale cognitive modeling. Cogn Sci 41(5):1152–1201

    Article  Google Scholar 

  • French RM (1995) The subtlety of sameness: a theory and computer model of analogy-making. MIT Press, Cambridge

    Google Scholar 

  • French RM (2002) The computational modeling of analogy-making. Trends Cogn Sci 6(5):200–205

    Article  Google Scholar 

  • French RM, Hofstadter D (1991) Tabletop: an emergent, stochastic model of analogy-making. In: Proceedings of the 13th annual conference of the cognitive science society. Lawrence Erlbaum, Hillsdale, NJ, pp 175–182

    Google Scholar 

  • Fuchs B, Mille A (1999) A knowledge-level task model of adaptation in case-based reasoning. In: Branting K, Althoff K-D, Bergmann R (eds) Proceedings of the third international conference on case-based reasoning, ICCBR-99. Lecture notes in artificial intelligence, vol 1650. Springer, Berlin, pp 118–131

    Google Scholar 

  • Fuchs B, Lieber J, Mille A, Napoli A (2000) An algorithm for adaptation in case-based reasoning. In: Horn W (ed) 14th European conference on artificial intelligence - ECAI’2000, Berlin. IOS Press, Amsterdam, pp 45–49

    Google Scholar 

  • Fuchs B, Lieber J, Mille A, Napoli A (2014) Differential adaptation: an operational approach to adaptation for solving numerical problems with CBR. Knowl Based Syst 68:103–114

    Article  Google Scholar 

  • Gaillard E, Infante-Blanco L, Lieber J, Nauer E (2014) Tuuurbine: a generic CBR engine over RDFS. In: Case-based reasoning research and development, vol 8765. Cork, Ireland, pp 140–154

    Google Scholar 

  • Gärdenfors P (2000) Conceptual spaces the geometry of thought. MIT Press, Cambridge

    Book  Google Scholar 

  • Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7(2):155–170

    Article  Google Scholar 

  • Gentner D (1989) The mechanisms of analogical learning. In: Vosniadou S, Ortony A (eds) Similarity and analogical reasoning. Cambridge University Press, New York, pp 197–241

    Google Scholar 

  • Gentner D, Holyoak K, Kokinov B (2001) The analogical mind: perspectives from cognitive science. MIT Press, Cambridge

    Book  Google Scholar 

  • Georgeon OL, Mille A, Bellet T, Mathern B, Ritter FE (2011) Supporting activity modelling from activity traces. Expert Syst

    Google Scholar 

  • Gilboa I, Schmeidler D (1995) Case-based decision theory. Q J Econ 110:605–639

    Article  MATH  Google Scholar 

  • Goel AK (1989) Integration of case-based reasoning and model-based reasoning for adaptive design problem solving. Ph.D. thesis, Ohio State University

    Google Scholar 

  • Gust H, Kühnberger K, Schmid U (2006) Metaphors and heuristic-driven theory projection (HDTP). Theor Comput Sci 354(1):98–117

    Article  MathSciNet  MATH  Google Scholar 

  • Hadj Ali A, Dubois D, Prade H (2003) Qualitative reasoning based on fuzzy relative orders of magnitude. IEEE Trans Fuzzy Syst 11:9–23

    Article  Google Scholar 

  • Hall RJ (1986) Learning by failing to explain. In: Proceedings of the fifth national conference on artificial intelligence (AAAI 86), pp 568–572

    Google Scholar 

  • Hall RP (1989) Computational approaches to analogical reasoning: a comparative analysis. Artif Intell 39:39–120

    Article  MathSciNet  MATH  Google Scholar 

  • Hammond K (1986) CHEF: a model of case-based planning. In: Press A (ed) Fifth national conference on artificial intelligence, Menlo Park, CA, pp 267–271

    Google Scholar 

  • Hammond K (1990) Explaining and repairing plans that fail. Artif Intell 45(1–2):173–228

    Article  Google Scholar 

  • Hanney K (1996) Learning adaptation rules from cases. MSc thesis, Trinity College Dublin, Ireland

    Google Scholar 

  • Helman DH (ed) (1988) Analogical reasoning: perspectives of artificial intelligence. Cognitive science, and philosophy. Kluwer, Dordrecht

    Google Scholar 

  • Hesse M (1966) Models and analogies in science, 1st edn. Sheed & Ward, London, 1963; 2nd augmented edn. University of Notre Dame Press

    Google Scholar 

  • Hofstadter D, Mitchell M (1995) The Copycat project: a model of mental fluidity and analogy-making. In: Hofstadter D (ed) Fluid concepts and creative analogies: computer models of the fundamental mechanisms of thought. Basic Books Inc., New York, pp 205–267

    Google Scholar 

  • Hofstadter D, Sander E (2013) Surfaces and essences: analogy as the fuel and fire of thinking. Basic Books, New York

    Google Scholar 

  • Holyoak K (2005) Analogy. The cambridge handbook of thinking and reasoning. Cambridge University Press, Cambridge

    Google Scholar 

  • Holyoak KJ, Thagard P (1989) Analogical mapping by constraint satisfaction. Cogn Sci 13:295–355

    Article  Google Scholar 

  • Holyoak KJ, Novick LR, Melz ER (1994) Component processes in analogical transfer: mapping, pattern completion, and adaptation. In: Holyoak KJ, Barnden JA (eds) Advances in connectionist and neural computation theory, vol. 2: analogical connections. Ablex Publishing, Westport, pp 113–180

    Google Scholar 

  • Hüllermeier E (2007) Case-based approximate reasoning. Springer, Berlin

    MATH  Google Scholar 

  • Hüllermeier E, Dubois D, Prade H (2002) Model adaptation in possibilistic instance-based reasoning. IEEE Trans Fuzzy Syst 10(3):333–339

    Article  Google Scholar 

  • Hummel JE, Holyoak KJ (1997) Distributed representations of structure: a theory of analogical access and mapping. Psychol Rev 104(3):427–466

    Article  Google Scholar 

  • Indurkhya B (1987) Approximate semantic transference: a computational theory of metaphors and analogies. Cogn Sci 11:445–480

    Article  Google Scholar 

  • Katsuno H, Mendelzon A (1991) Propositional knowledge base revision and minimal change. Artif Intell 52(3):263–294

    Article  MathSciNet  MATH  Google Scholar 

  • Klawonn F (2000) Fuzzy points, fuzzy relations and fuzzy functions. In: Novak V, Perfilieva I (eds) Discovering the world with fuzzy logic. Physica-Verlag, Heidelberg, pp 431–453

    MATH  Google Scholar 

  • Klein S (1982) Culture, mysticism and social structure and the calculation of behavior. In: Proceedings of the 5th European conference on artificial intelligence - ECAI, pp 141–146

    Google Scholar 

  • Kling R (1972) A paradigm for reasoning by analogy. Artif Intell 2:147–178

    Article  MATH  Google Scholar 

  • Koehler J (1996) Planning from second principles. Artif Intell 87:145–186

    Article  MathSciNet  Google Scholar 

  • Kolodner J (1993) Case-based reasoning. Morgan Kaufmann, San Francisco

    Book  MATH  Google Scholar 

  • Koton P (1988) Reasoning about evidence in causal explanations. In: Press A (ed) Seventh national conference on artificial intelligence, Menlo Park, CA, pp 256–261

    Google Scholar 

  • Langlais P, Patry A (2007) Translating unknown words by analogical learning. In: Joint conference on empirical methods in natural language processing (EMNLP) and conference on computational natural language learning (CONLL). Prague, pp 877–886

    Google Scholar 

  • Leake D, Kinley A, Wilson D (1996) Acquiring case adaptation knowledge: a hybrid approach. In: Proceedings of the 14th national conference on artificial intelligence (AAAI). AAAI Press, pp 684–689

    Google Scholar 

  • Lepage Y (2001) Analogy and formal languages. Electron Not Theor Comput Sci 53

    Google Scholar 

  • Lepage Y, Migeot J, Guillerm E (2009) A measure of the number of true analogies between chunks in Japanese. In: Vetulani Z, Uszkoreit H (eds) Human language technology. Challenges of the information society, third language and technology conference, LTC 2007, Poznan, 5–7 October 2007, Revised Selected Papers. LNCS, vol 5603. Springer, Berlin, pp 154–164

    Google Scholar 

  • Lieber J (2007) Application of the revision theory to adaptation in case-based reasoning: the conservative adaptation. In: Proceedings of the 7th international conference on case-based reasoning (ICCBR-07). Lecture notes in artificial intelligence, vol 4626. Springer, Belfast, pp 239–253

    Google Scholar 

  • Lieber J, Napoli A (1996) Using classification in case-based planning. In: Wahlster W (ed) European conference on artificial intelligence (ECAI’96). Wiley, Chichester, pp 132–136

    Google Scholar 

  • Lovett A, Forbus K, Usher J (2010) A structure-mapping model of Raven’s progressive matrices. In: Proceedings of the 32nd annual conference of the cognitive science society, Portland, OR

    Google Scholar 

  • McGreggor K, Kunda M, Goel AK (2014) Fractals and ravens. Artif Intel 215:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • McSherry D (1999) Demand driven discovery of adaptation knowledge. In: Proceedings of the sixteenth international joint conference on artificial intelligence. Morgan Kaufmann, San Francisco, pp 222–227

    Google Scholar 

  • Melis E (1995) A model of analogy-driven proof-plan construction. In: Proceedings of the 14th international joint conference on artificial intelligence (IJCAI’95). Montréal, pp 182–189

    Google Scholar 

  • Melis E, Lieber J, Napoli A (1998) Reformulation in case-based reasoning. In: Smyth B, Cunningham P (eds) Fourth European workshop on case-based reasoning, EWCBR-98. Lecture notes in artificial intelligence, vol 1488. Springer, Berlin, pp 172–183

    Google Scholar 

  • Melis E, Veloso M (1998a) Analogy in problem solving. Handbook of practical reasoning: computational and theoretical aspects. Oxford University Press, Oxford

    Google Scholar 

  • Melis E, Veloso M (1998b) Analogy in problem solving. In: del Cerro LF, Gabbay D, Ohlbach HJ (eds) Handbook of practical reasoning: computational and theoretical aspects, vol 17(1). Oxford University Press, Oxford, pp 1–73

    Google Scholar 

  • Miclet L, Prade H (2009) Handling analogical proportions in classical logic and fuzzy logics settings. In: Sossai C, Chemello G (eds) Proceedings 10th European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU’09), Verona, 1–3 July 2009. LNCS, vol 5590. Springer, Berlin, pp 638–650

    Google Scholar 

  • Miclet L, Bayoudh S, Delhay A (2008) Analogical dissimilarity: definition, algorithms and two experiments in machine learning. J Artif Intell Res (JAIR) 32:793–824

    Article  MathSciNet  MATH  Google Scholar 

  • Miclet L, Barbot N, Prade H (2014) From analogical proportions in lattices to proportional analogies in formal concepts. In: Schaub T, Friedrich G, O’Sullivan B (eds) Proceedings of the 21st European conference on artificial intelligence, 18–22 August 2014, Prague, pp 627–632

    Google Scholar 

  • Mille A (2006) From case-based reasoning to traces-based reasoning. Ann Rev Control 30(2):223–232

    Article  Google Scholar 

  • Minor M, Montani S, Recio-Garcia JA (2014) Information systems, vol 40 (Special Section on Process-Oriented Case-based Reasoning)

    Google Scholar 

  • Minsky M (1975) A framework for representing knowledge

    Google Scholar 

  • Mitchell M (1993) Analogy-making as perception: a computer model. MIT Press, Cambridge

    Google Scholar 

  • Mitchell M (2001) Analogy-making as a complex adaptive system. In: Segel L, Cohen I (eds) Design principles for the immune system and other distributed autonomous systems. Oxford University Press, Oxford

    Google Scholar 

  • Peirce CS (1955) Philosophical writings. Selected and edited, with an introduction by J. Buchler. Dover Publication, New York

    Google Scholar 

  • Perfilieva I, Dubois D, Prade H, Esteva F, Godo L, Hod’áková P (2012) Interpolation of fuzzy data: analytical approach and overview. Fuzzy Sets Syst 192:134–158

    Google Scholar 

  • Prade H, Richard G (2013) From analogical proportion to logical proportions. Logica Universalis 7(4):441–505

    Article  MathSciNet  MATH  Google Scholar 

  • Prade H, Richard G (eds) (2014a) Computational approaches to analogical reasoning - current trends. Springer, Berlin

    Google Scholar 

  • Prade H, Richard G (2014b) Homogenous and heterogeneous logical proportions. IfCoLog J Log Appl 1(1):1–51

    Google Scholar 

  • Raccah PY (1996) Topoi et Gestion des Connaissances. Masson

    Google Scholar 

  • Raven J (2000) The Raven’s progressive matrices: change and stability over culture and time. Cogn Psychol 41(1):1–48

    Article  MathSciNet  Google Scholar 

  • Recio-Garcia JA (2008) jCOLIBRI: a multi-level platform for building and generating CBR systems. PhD thesis, University of Madrid

    Google Scholar 

  • Richter MM (1998) Introduction. In: Lenz M, Bartsch-Spörl B, Burkhard H-D, Wess S (eds) Case-based reasoning technologies. From foundations to applications. LNCS, vol 1400. Springer, Berlin, pp 1–15

    Google Scholar 

  • Richter MM, Weber RO (2013) Case-based reasoning. Springer, Berlin

    Book  Google Scholar 

  • Riesbeck CK, Schank RC (1989) Inside case-based reasoning. Lawrence Erlbaum Associates

    Google Scholar 

  • Rougegrez S (1994) Similarity evaluation between observed behaviours for the prediction of processes. In: Wess S, Althoff K-D, Richter MM (eds) Topics in case-based reasoning - First European workshop (EWCBR’93), Kaiserslautern. LNCS, vol 837. Springer, Berlin, pp 155–166

    Google Scholar 

  • Ruspini EH (1991) On the semantics of fuzzy logic. Int J Approx Reason 5(1):45–88

    Article  MathSciNet  MATH  Google Scholar 

  • Russell SJ (1989) The use of knowledge in analogy and induction. Pitman, UK

    MATH  Google Scholar 

  • Schank R (1982) Dynamic memory: a theory of reminding and learning in computer and people. Cambridge University Press, Cambridge

    Google Scholar 

  • Schockaert S, Prade H (2011) Solving conflicts in information merging by a flexible interpretation of atomic propositions. Artif Intell 175:1815–1855

    Article  MathSciNet  MATH  Google Scholar 

  • Schockaert S, Prade H (2013) Interpolative and extrapolative reasoning in propositional theories using qualitative knowledge about conceptual spaces. Artif Intell 202:86–131

    Article  MathSciNet  MATH  Google Scholar 

  • Smyth B, Cunningham P (2017) Running with cases: a CBR approach to running your best marathon. In: Aha DW, Lieber J (eds) Case-based reasoning research and development, Proceedings of ICCBR-2017. Springer, Berlin, pp 360–374

    Google Scholar 

  • Smyth B, Keane MT (1995) Retrieval and adaptation in déjà vu, a case-based reasoning system for software design. In: Adaptation of knowledge for reuse: a 1995 AAAI fall symposium, Cambridge, Massachusetts. AAAI Press, pp 228–240

    Google Scholar 

  • Smyth B, Keane MT (1996) Using adaptation knowledge to retrieve and adapt design cases. Knowl-Based Syst 9(2):127–135

    Article  Google Scholar 

  • Sowa JF, Majumdar AK (2003) Analogical reasoning. In: Proceedings of the international conference on conceptual structures. LNAI, vol 2746. Springer, Dresden, pp 16–36

    Google Scholar 

  • Spalazzi L (2001) A survey on case-based planning. Artif Intell Rev 16(1):3–36

    Article  MATH  Google Scholar 

  • Stahl A (2005) Learning similarity measures: a formal view based on a generalized CBR model. In: Case-based reasoning research and development, Proceedings of ICCBR-2005. Springer, Berlin, pp 507–521

    Google Scholar 

  • Stahl A, Roth-Berghofer T (2008) Rapid prototyping of CBR applications with the open source tool myCBR. In: Advances in case-based reasoning, 9th European conference, ICCBR-2008, Trier, Germany. Proceedings. LNAI, vol 5239. Springer, Berlin, pp 615–629

    Google Scholar 

  • Stefik M (1995) Introduction to knowledge systems. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  • Stroppa N, Yvon F (2005a) An analogical learner for morphological analysis. In: Online proceedings of the 9th conference on computer natural language learning (CoNLL-2005), pp 120–127

    Google Scholar 

  • Stroppa N, Yvon F (2005b) Analogical learning and formal proportions: definitions and methodological issues. Technical report D004, ENST-Paris

    Google Scholar 

  • Stroppa N, Yvon F (2005c) Analogical learning and formal proportions: definitions and methodological issues. Technical report, ENST-2005-D004 June 2005. http://www.tsi.enst.fr/publications/enst/techreport-2007-6830.pdf

  • Stroppa N, Yvon F (2006) Du quatrième de proportion comme principe inductif: une proposition et son application à l’apprentissage de la morphologie. Traitement Automatique des Langues 47(2):33–59

    Google Scholar 

  • Syrovatka J (2000) Analogy and understanding. Theoria. Revista de Teoria, Historia y Fundamentos de la Ciencia 15(3):435–450

    Google Scholar 

  • Thagard P, Holyoak KJ, Nelson G, Gochfeld D (1990) Analog retrieval by constraint satisfaction. Artif Intell 46(3):259–310

    Article  MathSciNet  Google Scholar 

  • Tversky A (1977) Features of similarity. Psychol Rev 84:327–352

    Article  Google Scholar 

  • Van Dormael J (1990) The emergence of analogy. Analogical reasoning as a constraint satisfaction process. Philosophica 46:157–177

    Google Scholar 

  • Veloso MM (1994) Planning and learning by analogical reasoning. LNAI, vol 886. Springer, Berlin

    Google Scholar 

  • Wang P (2009) Analogy in a general-purpose reasoning system. Cogn Syst Res 10(3):286–296

    Article  Google Scholar 

  • Weber RO, Ashley KD, Brüninghaus S (2005) Textual case-based reasoning. Knowl Eng Rev 20(3):255–260

    Article  Google Scholar 

  • Weitzenfeld JS (1984) Valid reasoning by analogy. Philos Sci 51(1):137–149

    Article  MathSciNet  Google Scholar 

  • Weller S, Schmid U (2007) Solving proportional analogies by E-generalization. In: Freksa C, Kohlhase M, Schill K (eds) KI 2006: Advances in artificial intelligence. LNCS, vol 4314. Springer, Berlin, pp 64–75

    Google Scholar 

  • Wilke W, Vollrath I, Althoff K-D, Bergmann R (1996) A framework for learning adaptation knowledge based on knowledge light approaches. In: Adaptation in case based reasoning: a workshop at ECAI 1996, Budapest

    Google Scholar 

  • Winston PH (1980) Learning and reasoning by analogy. Commun ACM 23:689–703

    Article  Google Scholar 

  • Woolford M, Watson I (2017) SCOUT: a case-based reasoning agent for playing race for the galaxy. In: Aha DW, Lieber J (eds) Case-based reasoning research and development, Proceedings of ICCBR-2017. Springer, Berlin, pp 390–402

    Google Scholar 

  • Yvon F, Stroppa N, Delhay A, Miclet L (2004) Solving analogical equations on words. Technical report, Ecole Nationale Supérieure des Télécommunications

    Google Scholar 

  • Zadeh LA (1979) A theory of approximate reasoning. In: Hayes J, Mitchie D, Mikulich L (eds) Machine intelligence, vol 9. Elsevier, Amsterdam, pp 149–194

    Google Scholar 

  • Zarka R, Cordier A, Egyed-Zsigmond E, Mille A (2011) Rule-based impact propagation for trace replay. In: Ram A, Wiratunga N (eds) International case-based reasoning conference (ICCBR 2011), Greenwich, London, United Kingdom. Springer, Berlin, pp 482–495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuchs, B. et al. (2020). Case-Based Reasoning, Analogy, and Interpolation. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06164-7_10

Download citation

Publish with us

Policies and ethics