Skip to main content

Medic-Us: Advanced Social Networking for Intelligent Medical Services and Diagnosis

  • 475 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 815)

Abstract

Health services are on the top priorities for society, but up to now we have failed in make it universal all around the world. Nowadays information technologies, especially social networks have demonstrated its usefulness in different areas. This article describes the design and development of a social network platform focused on the physician-patient and physician-physician interactions, in order to achieve better and faster diagnosis. Like other social networks or social media tools, it focusses on the collaboration among its members. This collaboration is improved with the help of paradigms as Collaborative Intelligence and Wisdom of the Crowd. We called this platform Medic-Us high-lighting the collaborative practice among the practitioners, and the interaction with patients. This document describes the different modules of Medic-Us, the social network environment, medical consult service, information retrieval, and a trainer module for the medicine students.

Keywords

  • Social networks
  • Decision support system
  • Semantic web
  • Diagnostic system
  • Collaborative intelligence

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-06149-4_9
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-06149-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8

Notes

  1. 1.

    Patients.co.uk, SurWiky, HealthyPlace, PatientOption and doc2doc.

References

  1. Israel, B.A.: Social networks and social support: implications for natural helper and community level interventions. Health Educ. Q. 12(1), 65–80 (1985)

    CrossRef  Google Scholar 

  2. Heylighen, F.: 2 Collective intelligence and its implementation on the web: algorithms to develop a collective mental map. Comput. Math. Org. Theory 5(3), 253–280 (1999)

    CrossRef  Google Scholar 

  3. Surowiecki, J.: The wisdom of crowds. Anchor (2005)

    Google Scholar 

  4. Alag, S.: Collective intelligence in action. Manning Publications Co. (2008)

    Google Scholar 

  5. Barsky, E.: Introducing web 2.0: weblogs and podcasting for health librarians. J. Canadian Health Lib. Assoc. J. de l Assoc. des bibliotheques de la sante du Canada 27(2), 33–34 (2006)

    CrossRef  Google Scholar 

  6. Rohani, V.A., Hock, O.S.: On social network web sites: definition, features, architectures and analysis tools. J. Comput. Eng. 1, 3–11 (2009)

    Google Scholar 

  7. Eysenbach, G.: What is e-health? J. Med. Internet Res. (2001)

    Google Scholar 

  8. Judd, T., Kennedy, G.: Expediency-based practice? medical students’ reliance on google and wikipedia for biomedical inquiries. Brit. J. Educ. Technol. 42(2), 351–360 (2011)

    CrossRef  Google Scholar 

  9. Lavsa, S.M., Corman, S.L., Culley, C.M., Pummer, T.L.: Reliability of wikipedia as a medication information source for pharmacy students. Currents Pharm. Teach. Learn. 3(2), 154–158 (2011)

    CrossRef  Google Scholar 

  10. Hernández-Chan, G.S., Ceh-Varela, E.E., Sanchez-Cervantes, J.L., Vil-lanueva-Escalante, M., Rodríguez-González, A., Pérez-Gallardo, Y.: Collective intelligence in medical diagnosis systems: a case study. Comput. Biol. Med. 74, 45–53 (2016)

    CrossRef  Google Scholar 

  11. KamelBoulos, M.N., Wheeler, S.: The emerging web 2.0 social software: an enabling suite of sociable technologies in health and health care education. Health Inf. Lib. J. 24(1), 2–23 (2007)

    CrossRef  Google Scholar 

  12. Giustini, D.: How web 2.0 is changing medicine. Brit. Med. J. Publ. Group (2006)

    Google Scholar 

  13. Sandars, J., Schroter, S.: Web 2.0 technologies for undergraduate and post-graduate medical education: an online survey. Postgrad. Med. J. 83(986), 759–762 (2007)

    CrossRef  Google Scholar 

  14. Giustini, D.: Web 3.0 and medicine. Brit. Med. J. Publ. Group (2007)

    Google Scholar 

  15. Boulos, M.N.K., Maramba, I., Wheeler, S.: Wikis, blogs and podcasts: a new generation of web-based tools for virtual collaborative clinical practice and education. BMC Med. Educ. 6(1), 41 (2006)

    CrossRef  Google Scholar 

  16. Gruber, T.: Collective knowledge systems: where the social web meets the se-mantic web. Web Semantics Sci. Serv. Agents World Wide Web 6(1), 4–13 (2008)

    CrossRef  Google Scholar 

  17. Zhdanova, A.V.: Community-driven ontology construction in social networking portals. Web Intel. Agent Syst. Int. J. 6(1), 93–121 (2008)

    Google Scholar 

  18. Tellez, E.S., Miranda-Jiménez, S., Graff, M., Moctezuma, D., Siordia, O.S., and Villaseñor, E.A.: A case study of spanish text transformations for twitter sentiment analysis. Expert Syst. Appl. 81, 457–471 (2017). https://doi.org/10.1016/j.eswa.2017.03.071

    CrossRef  Google Scholar 

  19. Rodriguez-Gonzalez, A., Hernandez-Chan, G., Colomo-Palacios, R., Mi-guel Gomez-Berbis, J., Garcia-Crespo, A., Alor-Hernandez, G., Valencia-Garcia, R.: Towards an ontology to support semantics enabled diagnostic decision support systems. Curr. Bioinf. 7(3), 234–245 (2012)

    CrossRef  Google Scholar 

  20. Spackman, K.: Snomedct: style guide: observables and investigation procedures (laboratory). Int. Health Terminol. Stand. Develop. Org. (2010)

    Google Scholar 

  21. Corcho, O., Fernández-Lopez, M., Gómez-Pérez, A.: “Methodologies, tools and languages for building ontologies”, where is their meeting point? Data Knowl. Eng. 46(1), 41–64 (2003)

    CrossRef  Google Scholar 

  22. Pinto, H.S., Gomez-Pérez, A., Martins, J.P.: Some issues on ontology integration. In: IJCAI and the Scandinavian AI Societies. CEUR Workshop Proceedings (1999)

    Google Scholar 

  23. Miller, N., Lacroix, E.M., Backus, J.E.: Medlineplus: building and maintaining the national library of medicine’s consumer health web service. Bull. Med. Libr. Assoc. 88(1), 11 (2000)

    Google Scholar 

  24. Tsumoto, S.: Automated extraction of medical expert system rules from clinical databases based on rough set theory. Inf. Sci. 112(1–4), 67–84 (1998)

    CrossRef  Google Scholar 

  25. Tan, K.C., Yu, Q., Heng, C., Lee, T.H.: Evolutionary computing for knowledge discovery in medical diagnosis. Artif. Intel. Med. 27(2), 129–154 (2003)

    CrossRef  Google Scholar 

  26. Hahn, U., Romacker, M., Schulz, S.: Medsyndikate—a natural language system for the extraction of medical information from findings reports. Int. J. Med. Inf. 67(1–3), 63–74 (2002)

    CrossRef  Google Scholar 

  27. Do Amaral, M.B., Roberts, A., Rector, A.L.: Nlp techniques associated with the opengalen ontology for semi-automatic textual extraction of medical knowledge: abstracting and mapping equivalent linguistic and logical constructs. In: Proceedings of the AMIA Symposium, p. 76. American Medical Informatics Association (2000)

    Google Scholar 

  28. Rodríguez-Gonzalez, A., Martínez-Romero, M., Costumero, R., Wil-kinson, M.D., Menasalvas-Ruiz, E.: Diagnostic knowledge extraction from med-lineplus: an application for infectious diseases. In: 9th International Conference on Practical Applications of Computational Biology and Bioinformatics, pp. 79–87. Springer (2015)

    Google Scholar 

  29. Elkin, P.L., Brown, S.H., Husser, C.S., Bauer, B.A., Wahner-Roedler, D., Rosenbloom, S.T., Speroff, T.: Evaluation of the content coverage of snomed-ct: ability of snomed clinical terms to represent clinical problem lists. In: Mayo Clinic Proceedings, vol. 81, pp. 741–748. Elsevier (2006)

    Google Scholar 

  30. McBride, B.: Jena: implementing the RDF model and syntax specification. In: Proceedings of the Second International Conference on Semantic Web, vol. 40, pp. 23–28 (2001)

    Google Scholar 

  31. Knight, K., Marcu, D.: Summarization beyond sentence extraction: a probabilistic approach to sentence compression. Artif. Intell. 139(1), 91–107 (2002)

    CrossRef  Google Scholar 

  32. McDonald, R.: Discriminative sentence compression with soft syntactic evidence. Proc. EACL 6, 297–304 (2006)

    Google Scholar 

  33. Molina, A., Torres-Moreno, J.M., SanJuan, E., Da Cunha, I., Martínez, G.E.S.: Discursive sentence compression. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 394–407. Springer (2013)

    Google Scholar 

  34. Sporleder, C., Lapata, M.: Discourse chunking and its application to sentence compression. In: Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 257–264. ACL (2005)

    Google Scholar 

  35. Molina, A.: Compresión automática de frases: un estudio hacia la gene-ración de resúmenes en español. Intel. Artif. 16(51), 41–62 (2013)

    Google Scholar 

  36. Chen, S., Goodman, J.: An empirical study of smoothing techniques for language modeling. Comput. Speech Lang. 13(4), 359–393 (1999)

    CrossRef  Google Scholar 

  37. Stolcke, A.: Srilm—an extensible language modeling toolkit. In: International Conference on Spoken Language Processing, vol. 2, pp. 901–904. Denver (2002)

    Google Scholar 

  38. Tanabe, L., Xie, N., Thom, L.H., Matten, W., Wilbur, W.J.: Genetag: a tagged corpus for gene/protein named entity recognition. BMC Bioinf. 6(1), 1 (2005)

    CrossRef  Google Scholar 

  39. Rockt¨aschel, T., Weidlich, M., Leser, U.: Chemspot: a hybrid system for chemical named entity recognition. Bioinformatics 28(12), 1633–1640 (2012)

    CrossRef  Google Scholar 

  40. Sobhana, N., Mitra, P., Ghosh, S.: Conditional random field based named entity recognition in geological text. Int. J. Comput. Appl. 1(3), 143–147 (2010)

    Google Scholar 

  41. Smith, D.A., Crane, G.: Disambiguating geographic names in a historical digital library. In: Research and Advanced Technology for Digital Libraries, pp. 127–136. Springer (2001)

    Google Scholar 

  42. Hirschman, L., Yeh, A., Blaschke, C., Valencia, A.: Overview of biocreative: critical assessment of information extraction for biology. BMC Bioinf. 6(Suppl 1), S1 (2005)

    CrossRef  Google Scholar 

  43. Hernandez-Chan, G.S., Ceh-Varela, E.E., Cervera-Evia, G., Quijano-Aban, V.: Using semantic technologies for an intelligent medical trainer. In: International Symposium on Intelligent Computing Systems, pp. 74–82. Springer (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Molina Villegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hernández-Chan, G., Molina Villegas, A., Chirinos Colunga, M., S. Siordia, O., Rodríguez-González, A. (2019). Medic-Us: Advanced Social Networking for Intelligent Medical Services and Diagnosis. In: Alor-Hernández, G., Sánchez-Cervantes, J., Rodríguez-González, A., Valencia-García, R. (eds) Current Trends in Semantic Web Technologies: Theory and Practice. Studies in Computational Intelligence, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-030-06149-4_9

Download citation