Challenges in RDF Validation

  • Jose Emilio Labra-GayoEmail author
  • Herminio García-González
  • Daniel Fernández-Alvarez
  • Eric Prud’hommeaux
Part of the Studies in Computational Intelligence book series (SCI, volume 815)


The RDF data model forms a cornerstone of the Semantic Web technology stack. Although there have been different proposals for RDF serialization syntaxes, the underlying simple data model enables great flexibility which allows it to be successfully employed in many different scenarios and to form the basis on which other technologies are developed. In order to apply an RDF-based approach in practice it is necessary to communicate the structure of the data that is being stored or represented. Data quality is of paramount importance for the acceptance of RDF as a data representation language and it must be enabled by the use of tools that can check if some data conforms to some specific structure. There have been several recent proposals for RDF validation languages like ShEx and SHACL. In this chapter, we describe both proposals and enumerate some challenges and trends that we foresee with regards to RDF validation. We devote more space to what we consider one of the main challenges, which is to compare ShEx and SHACL and to understand their underlying foundations. To that end, we propose an intermediate language and show how ShEx and SHACL can be converted to it.



This work is partially funded by the Spanish Ministry of Economy and Competitiveness (Society challenges: TIN2017-88877-R).


  1. 1.
    Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification (1999).
  2. 2.
    Brickley, D., Guha, R.V., Layman, A.: Resource description framework (RDF) schemas (1998).
  3. 3.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup Language (XML) 1.0, 5th ed. W3C Recommendation (2008)Google Scholar
  4. 4.
    Gao, S., Sperberg-McQueen, C.M., Thompson, H.S.: W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Recommendation (2012)Google Scholar
  5. 5.
    Van der Vlist, E.: Relax, NG.: A Simpler Schema Language for XML. O’Reilly, Beijing (2004)Google Scholar
  6. 6.
    McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommendation (2004)Google Scholar
  7. 7.
    Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query languages. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) The Semantic Web—ISWC 2004, pp. 502–517. Springer, Berlin, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation (2008)Google Scholar
  9. 9.
    Berners-Lee, T.: Linked-data design issues. W3C design issue document, June 2006.
  10. 10.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data—the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  11. 11.
    Labra Gayo, J.E., Prud’hommeaux, E., Solbrig, H.R., Rodríguez, J.M.Á.: Validating and describing linked data portals using RDF shape expressions. In: Proceedings of the 1st Workshop on Linked Data Quality Co-located with 10th International Conference on Semantic Systems, LDQ@SEMANTiCS 2014. CEUR Workshop Proceedings, vol. 1215 (2014)Google Scholar
  12. 12.
    Hogan, A., Arenas, M., Mallea, A., Polleres, A.: Everything you always wanted to know about blank nodes. Web Semant. 27(C), 42–69 (2014)Google Scholar
  13. 13.
    Prud’hommeaux, E., Carothers, G.: RDF 1.1 turtle: Terse RDF triple language (2014).
  14. 14.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation (2013)Google Scholar
  15. 15.
    Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property paths. In: The Semantic Web—ISWC 2015, pp. 3–18. Springer International Publishing (2015)Google Scholar
  16. 16.
    Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF validation and transformation language. In: Proceedings of the 10th International Conference on Semantic Systems, SEMANTICS 2014, pp. 32–40. ACM (2014)Google Scholar
  17. 17.
    Prud’hommeaux, E., Boneva, I., Labra Gayo, J.E., Kellog, G.: Shape Expressions Language 2.0 (2017).
  18. 18.
    Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.: Semantics and validation of shapes schemas for RDF. In: International Semantic Web Conference (2017)Google Scholar
  19. 19.
    Prud’hommeaux, E., Baker, T.: ShapeMap Structure and Language, July 2017.
  20. 20.
    Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C Proposed Recommendation, June 2017Google Scholar
  21. 21.
    Knublauch, H.: SPIN—Modeling Vocabulary (2011).
  22. 22.
    Ryman, A.G., Hors, A.L., Speicher, S.: OSLC resource shape: a language for defining constraints on linked data. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) Linked Data on the Web, CEUR Workshop Proceedings,, vol. 996 (2013)Google Scholar
  23. 23.
    Labra Gayo, J.E., Prud’hommeaux, E., Boneva, I., Kontokostas, D.: Validating RDF Data. Volume 7 of Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan and Claypool Publishers LLC (2017)Google Scholar
  24. 24.
    Labra Gayo, J.E., Shaclex: Scala Implementation of ShEx and SHACL (2018).
  25. 25.
    Staworko, S., Boneva, I., Labra Gayo, J.E., Hym, S., Prud’hommeaux, E.G., Solbrig, H.R.: Complexity and expressiveness of ShEx for RDF. In: 18th International Conference on Database Theory, ICDT 2015. LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, vol. 31, pp. 195–211 (2015)Google Scholar
  26. 26.
    Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL. In: Proceedings of the 17th International Semantic Web Conference, October 2018Google Scholar
  27. 27.
    Boneva, I.: Comparative expressiveness of ShEx and SHACL. Early working draft (2016)Google Scholar
  28. 28.
    Cabalar, P., Pearce, D., Valverde, A.: Stable reasoning. J. Appl. Non Class. Log 27(3–4), 238–254 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL (extended version). Technical Report KRDB18-01, KRDB Research Centre (2018)Google Scholar
  30. 30.
    Knublauch, H., Allemang, D., Steyskal, S.: SHACL advanced features 1.1. W3C Draft Community Group Report (2018)Google Scholar
  31. 31.
    Deursen, D.V., Poppe, C., Martens, G., Mannens, E., de Walle, R.V.: XML to RDF conversion: a generic approach. In: Nesi, P., Ng, K., Delgado, J. (eds.) 2008 International Conference on Automated solutions for Cross Media Content and Multi-channel Distribution, Florence, pp. 138–144. IEEE (2008).
  32. 32.
    Battle, S.: Gloze: XML to RDF and back again. In: Proceedings of the 1st Jena User Conference. HP Labs, Bristol (2006)Google Scholar
  33. 33.
    Thuy, P.T.T., Lee, Y.K., Lee, S., Jeong, B.S.: Transforming valid XML documents into RDF via RDF schema. In: Abraham, A., Han, S.Y. (eds.) Third International Conference on Next Generation Web Services Practices, Seoul, pp. 35–40. IEEE (2007).
  34. 34.
    Thuy, P.T.T., Lee, Y.K., Lee, S., Jeong, B.S.: Exploiting XML schema for interpreting XML documents as RDF. In: van der Aalst, W., Pu, C., Bertino, E., Feig, E., Hung, P.C.K. (eds.) 2008 IEEE International Conference on Services Computing (SCC’08), Honolulu, vol. 2, pp. 555–558. IEEE (2008).
  35. 35.
    Breitling, F.: A standard transformation from XML to RDF via XSLT. Astron. Nachr. 330(7), 755–760 (2009). Scholar
  36. 36.
    Sperberg-McQueen, C.M., Miller, E.: On mapping from colloquial XML to RDF using XSLT. In: Proceedings of Extreme Markup Languages® 2004, Montreal (2004).
  37. 37.
    Berrueta, D., Labra Gayo, J.E., Herman, I.: XSLT + SPARQL: scripting the semantic web with SPARQL embedded into XSLT stylesheets. In: Bizer, C., Auer, S., Aastrand, G., Tom Heath, G. (eds.) 4th Workshop on Scripting for the Semantic Web, Tenerife, CEUR-WS, vol. 368 (2008)Google Scholar
  38. 38.
    Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF and XML with XSPARQL. J. Data Semant. 1(3), 147–185 (2012). Scholar
  39. 39.
    Ermilov, I., Auer, S., Stadler, C., CSV2RDF: User-driven CSV to RDF mass conversion framework. In: Proceedings of the ISEM. Graz, Austria, vol. 13, pp. 04–06 (2013)Google Scholar
  40. 40.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recommendation (2012)Google Scholar
  41. 41.
    Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: LDOW, Seoul, Korea (2014)Google Scholar
  42. 42.
    Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked data generation at your fingertips! In: Proceedings of the 15th ESWC: Posters and Demos, Heraklion, Greece (2018)Google Scholar
  43. 43.
    Garcia-Gonzalez, H., Labra-Gayo, J.E., XMLSchema2ShEx: Converting XML Validation to RDF Validation. Semantic Web (2018).
  44. 44.
    Pham, M.D., Boncz, P.: Exploiting emergent schemas to make RDF systems more efficient. In: International Semantic Web Conference, pp. 463–479. Springer (2016)Google Scholar
  45. 45.
    Kim, G.H., Ko, S.K., Han, Y.S.: Inferring a relax ng schema from xml documents. In: International Conference on Language and Automata Theory and Applications, pp. 400–411. Springer (2016)Google Scholar
  46. 46.
    Klempa, M., Kozak, M., Mikula, M., Smetana, R., Starka, J., Švirec, M., Vitásek, M., Nečasky, M., Mlynková, I.H.: Jinfer: a framework for xml schema inference. Comput. J. 58(1), 134–156 (2015)CrossRefGoogle Scholar
  47. 47.
    Rietveld, L., Beek, W., Hoekstra, R., Schlobach, S.: Meta-data for a lot of lod. Semant. Web 8(6), 1067–1080 (2017)CrossRefGoogle Scholar
  48. 48.
    Hasnain, A., Mehmood, Q., Zainab, S.S., Hogan, A.: Sportal: profiling the content of public sparql endpoints. Int. J. Semant. Web Inf. Syst. (IJSWIS) 12(3), 134–163 (2016)CrossRefGoogle Scholar
  49. 49.
    Mihindukulasooriya, N., Poveda-Villalón, M., García-Castro, R., Gómez-Pérez, A.: Loupe-an online tool for inspecting datasets in the linked data cloud. In: International Semantic Web Conference (Posters and Demos) (2015)Google Scholar
  50. 50.
    Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets. In: LDOW (2009)Google Scholar
  51. 51.
    González, L., Hogan, A.: Modelling dynamics in semantic web knowledge graphs with formal concept analysis. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1175–1184 (2018)Google Scholar
  52. 52.
    Čebirić, Š., Goasdoué, F., Manolescu, I.: Query-oriented summarization of rdf graphs. Proc. VLDB Endow. 8(12), 2012–2015 (2015)CrossRefGoogle Scholar
  53. 53.
    Fernández-Álvarez, D., García-González, H., Frey, J., Hellmann, S., Labra Gayo, J.E.: Inference of latent shape expressions associated to dbpedia ontology. In: International Semantic Web Conference. Springer (2018)Google Scholar
  54. 54.
    Melo, A., Paulheim, H.: Learning SHACL constraints for validation of relation assertions in knowledge graphs. In: Extended Semantic Web Conference ESWC (2018)Google Scholar
  55. 55.
    Maali, F., Erickson, J. (eds).: Data Catalog Vocabulary (DCAT). W3C Recommendation (2014)Google Scholar
  56. 56.
    Reynolds, D.: The Organization Ontology. W3C Recommendation (2014)Google Scholar
  57. 57.
    Cyganiak, R., Reynolds, D.: The RDF Data Cube Vocabulary. W3C Recommendation (2014)Google Scholar
  58. 58.
    Labra Gayo, J.E.: RDFShape: RDF Playground (2018).
  59. 59.
    Ekaputra, F.J., Lin, X.: Shacl4p: Shacl constraints validation within protÃľgÃľ ontology editor. In: 2016 International Conference on Data and Software Engineering (ICoDSE), pp. 1–6 (2016)Google Scholar
  60. 60.
    Gray, A.J.G.: Validata: a tool for testing profile conformance. In: Smart Descriptions and Smarter Vocabularies (SDSVoc), Amsterdam, The Netherlands (2016)Google Scholar
  61. 61.
    Boston, B., Sampson, A., Grossman, D., Ceze, L.: Probability type inference for flexible approximate programming. SIGPLAN Not. 50(10), 470–487 (2015)CrossRefGoogle Scholar
  62. 62.
    Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL: a continuous query language for RDF data streams. Int. J. Semant. Comput. 04(01), 3–25 (2010)CrossRefGoogle Scholar
  63. 63.
    Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: The Semantic Web—ISWC 2011, pp. 370–388. Springer, Berlin, Heidelberg (2011)CrossRefGoogle Scholar
  64. 64.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)CrossRefGoogle Scholar
  65. 65.
    Calbimonte, J.-P. (ed.): RDF Stream Processing: Requirements and Design Principles. W3C Draft Community Group Report (2016)Google Scholar
  66. 66.
    Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic reasoning over streams. Technical Report INFSYS RR-1843-17-03, Institute of Information Systems, TU Vienna (2017)Google Scholar
  67. 67.
    Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental asp-based stream reasoning. TPLP 17(5–6), 744–763 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jose Emilio Labra-Gayo
    • 1
    Email author
  • Herminio García-González
    • 1
  • Daniel Fernández-Alvarez
    • 1
  • Eric Prud’hommeaux
    • 1
  1. 1.University of OviedoOviedoSpain

Personalised recommendations