Skip to main content

Surface Tension of High Temperature Liquids Evaluation with a Thermal Imaging Furnace

  • Conference paper
  • First Online:
Book cover Advanced Real Time Imaging II

Abstract

At high temperature, the reactivity of liquid metals, salts, oxides, etc. often requires a container-less approach for studying composition-sensitive thermodynamic properties, such as component activities and surface tension. This experimental challenge limits access to essential properties, and therefore our understanding of molten systems. Herein, a thermal imaging furnace (TIF) is investigated as a mean of container-less study of molten materials via the formation of pendant drops. In situ optical characterization of a liquid metal drop is proposed through the use of a conventional digital camera. We report one possible method for measuring surface tension of molten systems using this pendant drop technique in conjunction with an image analysis procedure. Liquid copper was used to evaluate the efficacy of this method. The surface tension of liquid copper was calculated to be 1.159 \(\pm \ 0.043\) N\(\text {m}^{-1}\) at \(1084\pm 20\) \(^{\circ }\mathrm {C}\), in agreement with published values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakanishi BR, Allanore A (2017) J Electrochem Soc 164(13):E460–E471

    Article  CAS  Google Scholar 

  2. Allen BC (1963) Trans Metall Soc AIME 227:1175–1183

    CAS  Google Scholar 

  3. Man KF (2000) Int J Thermophys 21(3):793–804

    Article  CAS  Google Scholar 

  4. Ricci E, Giuranno D, Sobczak N (2013) J Mater Eng Perform 22(11):3381–3388

    Article  CAS  Google Scholar 

  5. Kingery WD (1959) J Am Ceram Soc 42(1):6–10

    Article  CAS  Google Scholar 

  6. Rasmussen JJ, Nelson RP (1971) J Am Ceram Soc 54(8):398–401

    Article  CAS  Google Scholar 

  7. Lihrmann JM, Haggerty JS (1985) J Am Ceram Soc 68(2):81–85

    Article  CAS  Google Scholar 

  8. Peterson AW, Kedesdy H, Keck PH, Schwarz E (1958) J Appl Phys 29(2):213–216

    Article  CAS  Google Scholar 

  9. Berry JD, Neeson MJ, Dagastine RR, Chan DY, Tabor RF (2015) J Colloid Interface Sci 454:226–237

    Article  CAS  Google Scholar 

  10. Bashforth F, Adams JC (1883) An attempt to test the theories of capillary action: by comparing the theoretical and measured forms of drops of fluid. Cambridge University Press, Cambridge, UK

    Google Scholar 

  11. Merrington AC, Richardson EG (1947) Proc Phys Soc 59(1):1–13

    Article  CAS  Google Scholar 

  12. Andreas JM, Hauser EA, Tucker WB (1937) J Phys Chem 42(8):1001–1019

    Article  Google Scholar 

  13. Fordham S (1948) Proceedings of the royal society A: mathematical. Phys Eng Sci 194(1036):1–16

    CAS  Google Scholar 

  14. Stauffer CE (1965) J Phys Chem 69(6):1933–1938

    Article  CAS  Google Scholar 

  15. Maze C, Burnet G (1969) Surf Sci 13(2):451–470

    Article  Google Scholar 

  16. Rotenberg Y, Boruvka L, Neumann AW (1983) J Colloid Interface Sci 93(1):169–183

    Article  CAS  Google Scholar 

  17. Allen BC (1972) In: Beer SZ (ed) Liquid metals: chemistry and physics. Marcel Dekker Inc., New York, pp 161–212

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Osamu Takeda (Tohoku University) and Ms. Melody Wang (MIT) for their pioneering contributions with TIF furnace in our laboratory. Support for Mr. Andrew Caldwell comes from National Science Foundation (NSF), under grant number 1562545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Allanore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M., Caldwell, A.H., Allanore, A. (2019). Surface Tension of High Temperature Liquids Evaluation with a Thermal Imaging Furnace. In: Nakano, J., et al. Advanced Real Time Imaging II. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06143-2_4

Download citation

Publish with us

Policies and ethics