Gaia—A Holobiont-like System Emerging From Interaction



The Gaia hypothesis has been heavily discussed ever since its first formulation in the early 1970s. While parts of the hypothesis can be accepted right away, the optimizing view of Gaia as stabilizing conditions on Earth to support life on the planet has raised several doubts. In particular, the evolutionary aspect of conditions evolving in such an optimizing way is hardly in line with classical evolutionary theory. Considering Gaia as a holobiont-like system allows to clarify these issues. Accepting that every form of life interacts in manifold ways with its biotic and abiotic environments and that these interactions form a multilevel network from which higher-level properties can emerge, the self-stabilizing effect of the interactions of the biosphere with the geosphere and the atmosphere can be explained. With viewing evolution as adaptation of interaction and fitness as a shift in probability distribution of the observable, even the optimizing interpretation of Gaia does make sense and leads to valuable insight.


  1. Adams KL (2010) Dandelions ‘remember’ stress: heritable stress-induced methylation patterns. New Phytol 185:867–868PubMedCrossRefGoogle Scholar
  2. Aitchison JD, Rout MP (2015) The interactome challenge. J Cell Biol 211(4):729PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Gen 17:487–500CrossRefGoogle Scholar
  4. Anonymous (1914) Homeric hymns. In: Evelyn-White HG (ed) The Homeric Hymns and Homerica (Evelyn-White HG, With an English Translation). Harvard University Press, London, William Heinemann Ltd., Cambridge, MAGoogle Scholar
  5. Arthur R, Nicholson A (2017) An entropic model of Gaia. J Theor Biol 430:177–184PubMedCrossRefGoogle Scholar
  6. Badyaev AV, Uller T (2009) Parental effects in ecology and evolution: mechanisms, processes and implications. Phil Trans R Soc B 364(1520):1169–1177PubMedCrossRefGoogle Scholar
  7. Bedau MA (1996) The nature of life. In: Boden M (ed) The philosophy of artificial life. Oxford Univ Press, New York, pp 332–357Google Scholar
  8. Bedau MA (1998) Four puzzles about life. Artif Life 4:125–140PubMedCrossRefGoogle Scholar
  9. Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci USA 102:1302–1305PubMedCrossRefGoogle Scholar
  10. Berner RA, VandenBrooks JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558PubMedCrossRefGoogle Scholar
  11. Betts RA, LentonTM (2008) Second chances for lucky Gaia: a hypothesis of sequential selection. Hadley Centre, Technical Note 77 (6 Oct 2008)Google Scholar
  12. Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216PubMedCrossRefGoogle Scholar
  13. Brulheide H, Manegold M, Jandt U (2004) The genetical structure of Populus euphratica and Alhagi sparsifolia stands in the Taklimakan desert. In: Runge M, Zhang X (eds) Ecophysiology and habitat requirement of perennial plant species in the Taklimakan desert. Shaker, Aachen, pp 153–160Google Scholar
  14. zu Castell W, Fleischmann F, Heger T, Matyssek R (2016) Shaping theoretic foundations of holobiont-like systems. Prog Bot 77:219–244Google Scholar
  15. Chinnusami V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Current Opinion Plant Biol 12:133–139CrossRefGoogle Scholar
  16. Christensen K, Di Collobioano SA, Hall M, Jensen HJ (2002) Tangled nature: a model of evolutionary ecology. J Theor Biol 216:73–84PubMedCrossRefGoogle Scholar
  17. Davis JM (1980) The coordinated aerobatics of dunlin flocks. Anim Behav 28:668–673CrossRefGoogle Scholar
  18. Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  19. Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628PubMedPubMedCentralCrossRefGoogle Scholar
  20. Doolittle WF (1981) Is nature really motherly? Coevol Quart 29:58–63Google Scholar
  21. Doolittle WF (2014) Natural selection through survival alone, and the possibility of Gaia. Biol Philos 29:415–423CrossRefGoogle Scholar
  22. Downing K, Zvirinsky P (1999) The simulated evolution of biochemical guilds: reconciling Gaia theory and natural selection. Artif Life 5:291–318PubMedCrossRefGoogle Scholar
  23. Dyke JG, Weaver IS (2013) The emergence of environmental homeostasis in complex ecosystems. PLoS Comput Biol 9(5):e1003050PubMedPubMedCentralCrossRefGoogle Scholar
  24. Free A, Barton NH (2007) Do evolution and ecology need the Gaia hypothesis? Trends Ecol Evol 22(11):611–619PubMedCrossRefGoogle Scholar
  25. Fridriksson S (2005) Surtsey. Ecosystems formed. The Surtsey Research Society, ReykjavikGoogle Scholar
  26. Garnier S, Gautrais J, Theraulaz G (2007) The biological principles of swarm intelligence. Swarm Intell 1:3–31CrossRefGoogle Scholar
  27. Gershenson C (2012) The world as evolving information. In: Minai AA, Braha D, Bar-Yam Y (eds) Unifying themes in complex systems VII. Springer, Berlin, HeidelbergGoogle Scholar
  28. Gershenson C, Heylighen F (2005) How can we think the complex? In: Richardson K (ed) Managing organizational complexity: philosophy, theory and application. Information Age Publishing, Greenwich, pp 47–61Google Scholar
  29. Gershenson C, Trianni V, Werfel J, Sayama H (2018) Self-organization and artificial life: a review. arXiv:1804.01144 (3 Apr 2018)
  30. Giurfa M (2012) Social learning in insects: a higher-order capacity? Front Behav Neurosci 6:57PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  32. Grant MC (1993) The trembling plant. Discover. (Los Angeles) 84:82–89Google Scholar
  33. Greipsson S, Davy A (1994) Leymus arenarius. Characteristics and uses of a dune-building grass. Icel Agr Sci 8:41–50Google Scholar
  34. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352PubMedCrossRefGoogle Scholar
  35. van de Guchte M, Blottière HM, Doré J (2018) Humans as holobionts: implications for prevention and therapy. Microbiome 6:81PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hopfield JJ (1994) Physics, computation, and why biology looks so different. J Theor Biol 171:53–60CrossRefGoogle Scholar
  37. Kasting JF, Siefert JL (2002) Life and the evolution of Earth’s atmosphere. Science 296:1066–1068PubMedCrossRefGoogle Scholar
  38. Kemperman JA, Barnes BV (1976) Clone size in American aspens. Can J Bot 54:2603–2607CrossRefGoogle Scholar
  39. Kirchner JW (2002) The Gaia hypothesis: fact, theory, and wishful thinking. Clim Change 52:391–408CrossRefGoogle Scholar
  40. Koshland DE (2002) The seven pillars of life. Science 295:2215–2216PubMedCrossRefGoogle Scholar
  41. Kovatcheva-Datchary P, Tremaroli V, Bäckhed F (2013) The gut microbiota. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Human microbiology, 4th ed. Springer, Berlin, pp 3–24CrossRefGoogle Scholar
  42. Krakauer DC, Page KM, Erwin DH (2009) Diversity, dilemmas, and monopolies of niche construction. Am Nat 173(1):26–40PubMedCrossRefGoogle Scholar
  43. Lane N, Martin WF (2012) The origin of membrane bioenergetics. Cell 151:1406–1416PubMedCrossRefGoogle Scholar
  44. Lenton TM (2004) Clarifying Gaia: regulation with or without natural selection. In: Schneider SH, Miller JR, Crist E, Boston PJ (eds) Scientists debate Gaia. The next century. MIT Press, Cambridge, MA, pp 15–25Google Scholar
  45. Lenton TM, Wilkinson DM (2003) Developing the Gaia theory. Clim Change 58:1–12CrossRefGoogle Scholar
  46. Lovelock JE (1972) Gaia as seen through the atmosphere. Atmos Envir 6:579–580CrossRefGoogle Scholar
  47. Lovelock JE (1979) Gaia: a new look at life on earth. Oxford University Press, OxfordGoogle Scholar
  48. Lovelock JE (1988) The ages of Gaia. W.W. Norton & Company, New YorkGoogle Scholar
  49. Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 24:2–9Google Scholar
  50. Lüttge U (2016) Plants shape the terrestrial environment on earth: challenges of management for sustainability. Progr Bot 77:187–217Google Scholar
  51. Lüttge U, Scarano FR (2019) Emergence and Sustainment of Humankind on Earth: the Categorical Imperative. In: Wegner LH, Lüttge U (eds), Emergence and modularity in life science, Springer, Heidelberg, pp 235–254Google Scholar
  52. Magnússon B, Magnússon SH, Ólafsson E, Sigurdsson BD (2014) Plant colonization, succession and ecosystem development on Surtsey with reference to neighbouring islands. Biogeosciences 11:5521–5537CrossRefGoogle Scholar
  53. Marsh L, Onof C (2008) Stigmergic epistemology, stigmergic cognition. Cogn Syst Res 9(1–2):136–149CrossRefGoogle Scholar
  54. Martin A, Chahwan R, Parsa JY, Scharff MD (2015) Somatic hypermutation: the molecular mechanisms underlying the production of effective high-affinity antibodies. In: Honjo T, Reth M, Radbruch A, Alt F (eds) Molecuar biology of B cells. Academic Press, London, pp 363–388Google Scholar
  55. Matyssek R, Lüttge U (2013) Gaia: The planet Holobiont. In: Matyssek R, Lüttge U, Rennenberg H (eds), The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina, vol 114/391, pp 325–344Google Scholar
  56. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049PubMedCrossRefGoogle Scholar
  57. Nachtigall W (2010) Bionik als Wissenschaft. Erkennen – Abstrahieren – Umsetzen. Springer, HeidelbergGoogle Scholar
  58. Netter H (1959) Theoretische Biochemie. Springer, HeidelbergCrossRefGoogle Scholar
  59. Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2(1):55–64PubMedPubMedCentralCrossRefGoogle Scholar
  60. Noble D (2017) Digital and analogue information in organisms. In: Walker SI, Davies PCW, Ellis GFR (eds) From matter to life. Information and causality. Cambridge University Press, Cambridge, pp 114–129CrossRefGoogle Scholar
  61. Popper K (2013) Eine Neuinterpretation des Darwinismus. Die erste Medawar-Vorlesung 1986 (German). Aufklärung und Kritik 1:7–20Google Scholar
  62. van der Post DJ, Franz M, Laland KN (2016) Skill learning and the evolution of social learning mechanisms. BMC Evol Biol 16(1):166PubMedPubMedCentralCrossRefGoogle Scholar
  63. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comp Graph 21:25–34CrossRefGoogle Scholar
  64. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362PubMedCrossRefGoogle Scholar
  65. Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6:78PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274CrossRefGoogle Scholar
  67. Saltz JB, Nuzhdin SV (2014) Genetic variation in niche construction: implications for development and evolutionary genetics. Trends Ecol Evol 29(1):8–14PubMedCrossRefGoogle Scholar
  68. Schwartzman DW, Volk T (1989) Biotic enhancement of weathering and the habitability of Earth. Nature 340:457CrossRefGoogle Scholar
  69. Selous E (1931) Thought-transference (or what?) in birds. Constable, LondonGoogle Scholar
  70. Simpson GG (1953) The Baldwin effect. Evolution 7(2):110–117CrossRefGoogle Scholar
  71. Skinner MK, Gurerrero-Bosagna C, Haque MM, Nilsson EE, Koop JAH, Knutie SA, Clayton DH (2014) Epgenetics and the evolution of Darwin’s finches. Genome Biol Evol 6(8):1972–1989PubMedPubMedCentralCrossRefGoogle Scholar
  72. Smedley SR, Eisner T (1996) Sodium: a male moth’s gift to its offspring. Proc Natl Acad Sci USA 93:809–813PubMedCrossRefGoogle Scholar
  73. Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity—complexity—diversity in eco-physiology. Progr Bot 76:211–239Google Scholar
  74. Stern M (1999) Emergence of homeostasis and ‘noise imprinting’ in an evolution model. Proc Natl Acad Sci USA 96:10746–10751PubMedCrossRefGoogle Scholar
  75. Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16(3):284–307CrossRefGoogle Scholar
  76. Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA, Sapp J, Wandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microorganisms. MSystems 1(2):e00028–16Google Scholar
  77. Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12PubMedCrossRefGoogle Scholar
  78. Thornton A, Clutton-Brock T (2011) Social learning and the development of individual and group behaviour in mammal society. Phil Trans Roy Soc B Biol Sci 366:978–987CrossRefGoogle Scholar
  79. Torday JS (2015) Homeostasis as the mechanism of evolution. Biology 4:573–590PubMedPubMedCentralCrossRefGoogle Scholar
  80. Tyrrell T (2013) On Gaia: a critical investigation of the relationship between life and earth. Princeton University Press, PrincetonCrossRefGoogle Scholar
  81. von Uexküll J (1957) A stroll through the worlds of animals and men. In: Schiller CH (ed) Instinctive behavior: the development of a modern concept. Internships University Press, New York, pp 5–80Google Scholar
  82. Ulanowicz RE (1998) Network orientors: theoretical and philosophical considerations why ecosystems may exhibit a propensity to increase ascendency. In: Müller F, Leupels M (eds) Eco targets, goal functions, and orientors. Springer, Berlin, pp 177–192CrossRefGoogle Scholar
  83. Ulanowicz RE (2014) Reckoning the nonexistent: putting the science right. Ecol Modell 293:22–30CrossRefGoogle Scholar
  84. Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Wandenkoornhuyse P (2018) A microorganisms’ journey between plant generations. Microbiome 6:79PubMedPubMedCentralCrossRefGoogle Scholar
  85. Varela FG, Maturana HR, Uribe R (1974) Autopoisis: the organization of living systems, its characterization and a model. BioSystems 5:187–196CrossRefGoogle Scholar
  86. Wadhams P (2016) The global impacts of rapidly disappearing arctic sea ice. YaleEnvironment360, 26 Sept 2016Google Scholar
  87. Walter H, Breckle SW (1984) Ökologie der Erde. 2. Spezielle Ökologie der tropischen und subtropischen Zonen. Gustav Fischer, StuttgartGoogle Scholar
  88. Wassenburg JA, Dietrich S, Fietzke J, Fohlmeister J, Jochum KP, Scholz D, Richter DK, Sabaoui A, Spötl C, Lohmann G, Andreae MO, Immenhauser (2016) Reorganization of the north atlantic oscillation during early Holocene deglaciation. Nat Geosci 9:602–605CrossRefGoogle Scholar
  89. Watson AJ, Lovelock JE (1983) Biological homeostasis of the global environment: the parable of Daisyworld. Tellus 35B:284–289CrossRefGoogle Scholar
  90. Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320PubMedPubMedCentralCrossRefGoogle Scholar
  91. Williams HTP, Lenton TM (2007) The Flask model: emergence of nutrient-recycling microbial ecosystems and their disruption by environment-altering rebel organisms. Oikos 116:1087–1105CrossRefGoogle Scholar
  92. Woods HA, Wilson JK (2013) An information hypothesis for the evolution of homeostasis. Trends Ecol Evol 28(5):283–289PubMedCrossRefGoogle Scholar
  93. Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735PubMedCrossRefGoogle Scholar
  94. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360PubMedCrossRefGoogle Scholar
  95. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol 32:723–735CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Scientific Computing Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Department of MathematicsTechnische Universität MünchenMunichGermany
  3. 3.Department of BiologyTechnical University of DarmstadtDarmstadtGermany
  4. 4.Ecophysiology of Plants, Center of Life and Food Sciences WeihenstephanTechnische Universität MünchenFreisingGermany

Personalised recommendations