A Novel Strategy for the Surface Modification of Superparamagnetic (Fe3O4) Iron Oxide Nanoparticle for Lung Cancer Imaging

  • Mayank Bhushan
  • Yogesh Kumar


Superparamagnetic iron oxide nanoparticles (SPIONs) have recently gained interest due to their low toxicity, biocompatibility, magnetic potential, and catalytic nature. Their biocompatible nature makes them suitable candidate for biomedical applications. SPIONs are considered as inert and used in different areas such as imaging, targeted drug delivery and biosensors. Their surfaces can be modified using different coating and labeling agents which has broaden their role in diagnosis and nanomedicine applications. SPIONs have got wide range of applications in biomedical and healthcare industry such as drug-delivery vehicle for chemotherapeutic drugs, an agent to induce heat mediated killing of cancer cells (hyperthermia) and as contrast agent in magnetic resonance imaging (MRI). More often SPIONs are used for simultaneous image guided delivery of chemotherapeutic drugs to the tumor cells and hyperthermia is used synergistically to enhance the overall lethal effect of the whole treatment process toward tumor cells. In this chapter, we discuss different strategies for surface modification of SPIONs and their applications for diagnosis and treatment of lung cancer.


SPIONs Surface modification Lung cancer imaging Bioimaging 


  1. 1.
    Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering, 34(1), 23–38.Google Scholar
  2. 2.
    Huilan, Y., Gangyi, Z., Xiaohang, L., Congyang, L., Tingting, Z., Yanduo, T., Yanjun, K., Jiacheng, S., Yin, T., Bin, L., Xin, Z., & Gen, Z. (2016). Fe3O4 nanoparticles with ursolic methyl ester induce apoptosis of multidrug-resistant leukemia KA cell: In vitro evaluation. Journal of Nanoscience and Nanotechnology, 16(7), 7140–7144.Google Scholar
  3. 3.
    Xuhua, M., Zhanyun, R., Bin, H., Maomao, P., Haojie, L., Yina, D., Qiufan, X., Yihua, Z., Changliang, Z., Zhe, L., Yuxin, C., & Yanping, Z. (2016). Daunorubicin loaded Fe3O4 nanoparticles induce apoptosis of glioma cells and disrupt tight junction at blood–brain barrier. Journal of Nanoscience and Nanotechnology, 16(12), 12356–12361.Google Scholar
  4. 4.
    Gupta, J., Prakash, A., Jaiswal, M. K., Agarrwal, A., & Bahadur, D. (2018). Superparamagnetic iron oxide-reduced graphene oxide nanohybrid—A vehicle for targeted drug delivery and hyperthermia treatment of cancer. Journal of Magnetism and Magnetic Materials, 448, 332–338.Google Scholar
  5. 5.
    Ebrahimi, E., Khandaghi, A. A., Valipour, F., Babaie, S., Asghari, F., Motaali, S., Abbasi, E., Akbarzadeh, A., & Davaran, S. (2016). In vitro study and characterization of doxorubicin-loaded magnetic nanoparticles modified with biodegradable copolymers. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 550–558.Google Scholar
  6. 6.
    Mu, X., Zhang, F., Kong, C., Zhang, H., Zhang, W., Ge, R., Liu, Y., & Jiang, J. (2017). EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. International Journal of Nanomedicine, 12, 2899–2911.Google Scholar
  7. 7.
    Zhang, Y., Wang, X. J., Guo, M., Yan, H. S., Wang, C. H., & Liu, K. L. (2014). Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine. CJPS, 32(10), 1329–1337.Google Scholar
  8. 8.
    Huang, Y., Mao, K., Zhang, B., & Zhao, Y. (2017). Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Materials Science and Engineering. C, Materials for Biological Applications, 70, 763–771.Google Scholar
  9. 9.
    Yu, K. S., Lin, M. M., Lee, H. J., Tae, K. S., Kang, B. S., Lee, J. H., Lee, N. S., Jeong, Y. G., Han, S. Y., & Kim, D. K. (2016). Receptor-meditated endocytosis by hyaluronic acid@superparamagnetic nanovetor for targeting of CD44-overexpressing tumor cells. Nanomaterials, 6(8), 149.Google Scholar
  10. 10.
    Veiseh, O., Gunn, J. W., Kievit, F. M., Sun, C., Fang, C., Lee, J. S., & Zhang, M. (2009). Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small, 5(2), 256–264.Google Scholar
  11. 11.
    Akbarzadeh, A., Mikaeili, H., Zarghami, N., Mohammad, R., Barkhordari, A., & Davaran, S. (2012). Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. International Journal of Nanomedicine, 7, 511–526.Google Scholar
  12. 12.
    Choi, H., Choi, S. R., Zhou, R., Kung, H. F., & Chen, I. W. (2004). Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic Radiology, 11(9), 996–1004.Google Scholar
  13. 13.
    Pernal, S., Wu, V. M., & Uskoković, V. (2017). Hydroxyapatite as a vehicle for the selective effect of superparamagnetic iron oxide nanoparticles against human glioblastoma cells. ACS Applied Materials & Interfaces, 9(45), 39283–39302.Google Scholar
  14. 14.
    Lee, M. S., Su, C. M., Yeh, J. C., Wu, P. R., Tsai, T. Y., & Lou, S. L. (2016). Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment. International Journal of Nanomedicine, 11, 4583–4594.Google Scholar
  15. 15.
    Ye, P., Kong, Y., Chen, X., Li, W., Liu, D., Xie, Y., Zhou, Y., Zou, H., Chang, Z., Dai, H., Kong, X., & Liu, P. (2017). Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing breast cancer cells. Oncotarget, 8(7), 11389–11399.Google Scholar
  16. 16.
    Huang, G., Zhang, C., Li, S., Khemtong, C., Yang, S. G., Tian, R., Minna, J. D., Brown, K. C., & Gao, J. A. (2009). Novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging. Journal of Materials Chemistry, 19, 6367–6372.Google Scholar
  17. 17.
    Yoo, M. K., Park, I. K., Lim, H. T., Lee, S. J., Jiang, H. L., Kim, Y. K., Choi, Y. J., Cho, M. H., & Cho, C. S. (2012). Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomaterialia, 8(8), 3005–3013.Google Scholar
  18. 18.
    Sadhukha, T., Wiedmann, T. S., & Panyam, J. (2013). Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials, 34(21), 5163–5171.Google Scholar
  19. 19.
    Chiang, C. S., Tseng, Y. H., Liao, B. J., & Chen, S. Y. (2015). Magnetically targeted nanocapsules for PAA-cisplatin-conjugated cores in PVA/SPIO shells via surfactant-free emulsion for reduced nephrotoxicity and enhanced lung cancer therapy. Advanced Healthcare Materials, 4(7), 1066–1075.Google Scholar
  20. 20.
    Chen, C., Yu, H., Xia, R., Wang, L., Ai, H., Liu, S., Xu, Z., Xiao, X., & Gao, F. (2014). Magnetic resonance tracking of endothelial progenitor cells labeled with alkyl-polyethylenimine 2 kDa/superparamagnetic iron oxide in a mouse lung carcinoma xenograft model. Molecular Imaging, 13.
  21. 21.
    Menon, J. U., Kuriakose, A., Iyer, R., Hernandez, E., Gandee, L., Zhang, S., Takahashi, M., Zhang, Z., Saha, D., & Nguyen, K. T. (2017). Dual-drug containing core-shell nanoparticles for lung cancer therapy. Scientific Reports, 7, 13249.Google Scholar
  22. 22.
    Hou, X., Zhang, H., Li, H., & Zhang, D. (2016). Magnetic albumin immuno-nanospheres as an efficient gene delivery system for a potential use in lung cancer: Preparation, in vitro targeting and biological effect analysis. Journal of Drug Targeting, 24(3), 247–256.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mayank Bhushan
    • 1
  • Yogesh Kumar
    • 2
  1. 1.Department of NanotechnologyNorth Eastern Hill UniversityShillongIndia
  2. 2.Department of Biochemistry and Molecular BiologyPondicherry UniversityPuducherryIndia

Personalised recommendations