Surface Modification of Resorcinarene-Based Self-Assembled Solid Lipid Nanoparticles for Drug Targeting

  • Sanjoy Das
  • Malay K. DasEmail author


Supramolecular chemistry associates the dual concepts of self-arranging and molecular perception to generate novel nanocarrier systems. Nanoparticles have numerous benefits over other drug delivery carriers. Solid lipid nanoparticles (SLNs) have acquired significant attention as a potential substitutive carrier system to usual colloidal carriers like liposomes, emulsion, as well as polymeric nanoparticles. SLNs are the novel fundamental approaches to alter the oral bioavailability problems of the poorly aqueous soluble drug. However, due to the hydrophobicity of SLNs, they are essentially stabilized to prevent aggregation and diminish the liability of clearance by the macrophage system. Therefore, coating the SLNs surface by a highly hydrophilic moiety leads to prevent aggregation and severe interaction with healthy cells. Resorcinarenes are synthetic supramolecular macrocycles with bowl-shaped head and several hydrogen-bonding tails which are capable of developing additional host-guest complexes through the self-associate process. Resorcinarenes are the most frequently studied macrocycles for the buildup of supramolecular SLN systems, because the bowl-shaped head of the resorcinarene molecules can enable them to adhere readily to the SLN surface, permitted them to interact with the substances outside the coating but prevented them from touching each other, leading to meaningful impact on the stability aspects and physical–functional properties of nanoparticles. Significantly, resorcinarenes and its water-soluble components show good biodegradability, biocompatibility, and nontoxicity, which are essential requirements for applications in any type of drug delivery carriers. This chapter highlights the recent development in resorcinarene-based lipid nanocarriers for drug delivery and targeting.


Self-assembled SLNs Metal nanoparticles Surface-modified resorcinarene-based SLNs Surface-modified resorcinarene-based metal nanoparticles Drug delivery Drug targeting 



All figures and tables are original and self-made.


  1. 1.
    Mahapatro, A., & Singh, D. K. (2011). Biodegradable nanoparticles are excellent vehicle for site-directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology, 9(55), 1–11.Google Scholar
  2. 2.
    Yun, Y., Cho, Y. W., & Park, K. (2013). Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Advanced Drug Delivery Reviews, 65(6), 822–832.PubMedCrossRefGoogle Scholar
  3. 3.
    Soni, K., Kukereja, B. K., Kapur, M., & Kohli, K. (2015). Lipid nanoparticles: Future of oral drug delivery and their current trends and regulatory issues. International Journal of Current Pharmaceutical Review and Research, 7(1), 1–18.Google Scholar
  4. 4.
    Khan, A. K., Rashid, R., Murtaza, G., & Zahra, A. (2014). Gold nanoparticles: Synthesis and applications in drug delivery. Tropical Journal of Pharmaceutical Research, 13(7), 1169–1177.CrossRefGoogle Scholar
  5. 5.
    Guo, D., Xie, G., & Luo, J. (2014). Mechanical properties of nanoparticles: Basics and applications. Journal of Physics D: Applied Physics, 47, 1–25.Google Scholar
  6. 6.
    Öztürk-Atar, K., Eroğlu, H., & Çalış, S. (2017). Novel advances in targeted drug delivery. Journal of Drug Targeting, 23, 1–10.Google Scholar
  7. 7.
    Fahmy, T. M., Fonga, P. M., Goyal, A., & Saltzman, W. M. (2005). Targeted for drug delivery. Materials Today, 8(8), 18–26.CrossRefGoogle Scholar
  8. 8.
    Chowdhury, A., Kunjiappan, S., Panneerselvam, T., Somasundaram, B., & Bhattacharjee, C. (2017). Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. International Nano Letters, 7, 91–122.CrossRefGoogle Scholar
  9. 9.
    Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349–358.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yadav, N., Khatak, S., & Singh, U. V. S. (2013). Solid lipid nanoparticles: A review. International Journal of Applied Pharmaceutics, 5(2), 8–18.Google Scholar
  12. 12.
    Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2(3), 289–300.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wissing, S. A., Kayser, O., & Muller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272.PubMedCrossRefGoogle Scholar
  14. 14.
    Pardeshi, C., Rajput, P., Belgamwar, V., Tekade, A., Patil, G., Chaudhary, K., & Sonje, A. (2012). Solid lipid based nanocarriers: An overview. Acta Pharmaceutica, 62, 433–472.PubMedCrossRefGoogle Scholar
  15. 15.
    Müeller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 161–177.CrossRefGoogle Scholar
  16. 16.
    Hu, L. D., Tang, X., & Cui, F. D. (2004). Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. Journal of Pharmacy and Pharmacology, 56, 1527–1535.PubMedCrossRefGoogle Scholar
  17. 17.
    Geszke-Moritza, M., & Moritz, M. (2016). Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Materials Science and Engineering C, 68, 982–994.CrossRefGoogle Scholar
  18. 18.
    Nandini, P. T., Doijad, R. C., Shivakumar, H. N., & Dandagi, P. M. (2015). Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Journal of Drug Delivery, 22, 647–651.CrossRefGoogle Scholar
  19. 19.
    Kalaycioglu, G. D., & Aydogan, N. (2016). Preparation and investigation of solid lipid nanoparticles for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 510, 77–86.CrossRefGoogle Scholar
  20. 20.
    Jie, K., Zhou, Y., Yao, Y., & Huang, F. (2015). Macrocyclic amphiphiles. Chemical Society Reviews, 44(11), 3568–3587.PubMedCrossRefGoogle Scholar
  21. 21.
    Plachkova-Petrova, D., Petrova, P., Miloshev, S., & Novakov, C. (2012). Optimization of reaction conditions for synthesis C-tetramethylcalix[4]resorcinarene. Bulgarian Chemical Communications, 3, 208–215.Google Scholar
  22. 22.
    Yu, X., Trase, I., Ren, M., Duval, K., Guo, X., & Chen, Z. (2016). Design of nanoparticle-based carriers for targeted drug delivery. Journal of Nanomaterials, 2016, 1–15.Google Scholar
  23. 23.
    Motte, L., Billoudet, F., & Pileni, M. P. (1995). Self-assembled monolayer of nanosized particles differing by their sizes. Journal of Physical Chemistry, 99(44), 16425–16429.CrossRefGoogle Scholar
  24. 24.
    Frankamp, B. L., Uzun, O., Ilhan, F., Boal, A. K., & Rotello, V. M. (2002). Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers. Journal of American Chemical Society, 124(6), 892–893.CrossRefGoogle Scholar
  25. 25.
    Pileni, M. P. (2001). Nanocrystal self-assemblies: Fabrication and collective properties. Journal of Physical Chemistry-B, 105(17), 3358–3371.CrossRefGoogle Scholar
  26. 26.
    Collier, C. P., Vossmeyer, T., & Heath, J. R. (1998). Nanocrystal superlattices. Annual Review of Physical Chemistry, 49, 371–404.PubMedCrossRefGoogle Scholar
  27. 27.
    Nicholas, A. K., & Paul, S. W. (2014). Self-assembly of nanoparticles: A snapshot. ACS Nano, 8(4), 3101–3103.CrossRefGoogle Scholar
  28. 28.
    Martin Del Valle, E. M. (2003). Cyclodextrins and their uses: A review. Process Biochemistry, 39(9), 1033–1046.CrossRefGoogle Scholar
  29. 29.
    Ryzhakov, A., Thi, T. D., Stappaerts, J., Bertoletti, L., Kimpe, K., Rodrigues, A. S. C., Saokham, P., Mooter, G. V., Augustijns, A., Somsen, G. W., Kurkov, S., Inghelbrecht, S., Arien, A., Jimidar, M. I., Schrijnemakers, K., & Loftsson, T. (2016). Self-assembly of cyclodextrins and their complexes in aqueous solutions. Journal of Pharmaceutical Sciences, 105, 2556–2569.PubMedCrossRefGoogle Scholar
  30. 30.
    Hanumegowda, U. M., Wu, Y., & Adams, S. P. (2014). Potential impact of cyclodextrin containing formulations in toxicity evaluation of novel compounds in early drug discovery. The Journal of Pharmacy and Pharmacology, 2(1), 1–5.Google Scholar
  31. 31.
    Aburahma, M. H. (2016). Insights on novel particulate self-assembled drug delivery beads based on partial inclusion complexes between triglycerides and cyclodextrins. Drug Delivery, 23(7), 2205–2219.PubMedGoogle Scholar
  32. 32.
    Shahgaldian, P., Silva, E., & Coleman, A. W. (2003). A first approach to the study of calixarene solid lipid nanoparticle (SLN) toxicity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 46, 175–177.CrossRefGoogle Scholar
  33. 33.
    Toma, H. E. (2000). Supramolecular chemistry and technology. Anais da Academia Brasileira de Ciências, 72(1), 5–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Busseron, E., Ruff, Y., Moulin, E., & Giuseppone, N. (2013). Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 5, 7098–7140.PubMedCrossRefGoogle Scholar
  35. 35.
    Ngurah, B. I. G. M., Jumina, J., Anwar, C., Sunardi, S., & Mustofa, M. (2017). Synthesis and in vitro evaluation of C-methylcalix[4]resorcinaryl octacinnamate and C-methylcalix[4]resorcinaryl octabenzoate as the sunscreen. Indonesian Journal of Chemistry, 17(1), 63–70.CrossRefGoogle Scholar
  36. 36.
    Nicod, L., Chitry, F., Gaubert, F., & Lemaire, M. (1999). Application of water soluble resorcinarenes in nanofiltration-complexation with caesium and strontium as targets. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 34, 141–151.CrossRefGoogle Scholar
  37. 37.
    Pietraszkiewicz, M., Pietraszkiewicz, O., Uzig, E., Prus, P., Brzózka, Z., Woźniak, K., Bilewicz, R., Borowiak, T., & Mączyñski, M. (2000). Recent advances in calix[4]resorcinarene chemistry. Journal Butlerov Communications, 3, 55–65.Google Scholar
  38. 38.
    Hayashida, O., Mizuki, K., Akagi, K., Matsuo, A., Kanamori, T., Nakai, T., Sando, S., & Aoyama, Y. (2003). Macrocyclic glycoclusters. Self-aggregation and phosphate-induced agglutination behaviors of calix[4]resorcarene-based quadruple-chain amphiphiles with a huge oligosaccharide pool. Journal of American Chemical Society, 125(2), 594–601.CrossRefGoogle Scholar
  39. 39.
    Durairaj, R. B. (2005). Resorcinol: Chemistry, technology and applications (p. 149). Germany: Springer.Google Scholar
  40. 40.
    Balasubramanian, R., Kim, B., Tripp, S. L., Wang, X., Lieberman, M., & Wei, A. (2002). Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir, 18, 3676–3681.CrossRefGoogle Scholar
  41. 41.
    Hoegberg, A. G. S. (1980). Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. Journal of Organic Chemistry, 45(22), 4498–4500.CrossRefGoogle Scholar
  42. 42.
    Tunstad, L. M., Tucker, J. A., Dalcanale, E., Weiser, J., Bryant, J. A., Sherman, J. C., Helgeson, R. C., Knobler, C. B., & Cram, D. J. (1989). Host-guest complexation. 48. Octol building blocks for cavitands and carcerands. Journal of Organic Chemistry, 54(6), 1305–1312.CrossRefGoogle Scholar
  43. 43.
    Hoegberg, A. G. S. (1980). Stereoselective synthesis and DNMR study of two 1,8,15,22-T etraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols. Journal of the American Chemical Society, 102(19), 6046–6050.CrossRefGoogle Scholar
  44. 44.
    Jain, V. K., & Kanaiya, P. H. (2011). Chemistry of calix[4]resorcinarenes. Russian Chemical Reviews, 80(1), 75–102.CrossRefGoogle Scholar
  45. 45.
    Timmerman, P., Verboom, W., & Reinhoudt, D. N. (1996). Resorcinarenes. Tetrahedron, 52(8), 2663–2704.CrossRefGoogle Scholar
  46. 46.
    Utomo, S. B., Jumina, J., Siswanta, D., Mustofa, M., & Kumar, N. (2011). Synthesis of thiomethylated calix[4]resorcinarene based on fennel oil via chloromethylation. Indonesian Journal of Chemistry, 11(1), 1–8.CrossRefGoogle Scholar
  47. 47.
    Sardjonoa, R. E., Kadarohmana, A., & Mardhiyah, A. (2012). Green synthesis of some calix[4]resorcinarene under microwave irradiation. Procedia Chemistry, 4, 224–231.CrossRefGoogle Scholar
  48. 48.
    Thoden van Velzen, E. U., Engbersen, J. F. J., De Lange, P. J., Mahy, J. W. G., & Reinhoudt, D. N. (1995). Self-assembled monolayers of resorcinarene tetrasulfides on gold. Journal of the American Chemical Society, 117, 6853–6862.CrossRefGoogle Scholar
  49. 49.
    Bourgeois, J. M., & Stoeckli-Evans, H. (2005). Synthesis of new resorcinarenes under alkaline conditions. Helvetica Chimica Acta, 88(10), 2722–2730.CrossRefGoogle Scholar
  50. 50.
    Gerkensmeier, T., Mattay, J., & Näther, C. (2001). A new type of calixarene: Octahydroxypyridine[4]arenes. Chemistry A European Journal, 7(2), 465–474.CrossRefGoogle Scholar
  51. 51.
    Wang, M. (2008). Heterocalixaromatics, new generation macrocyclic host molecules in supramolecular chemistry. Chemical Communication, 38, 4541–4551.CrossRefGoogle Scholar
  52. 52.
    Wang, M. (2012). Nitrogen and oxygen bridged calixaromatics: Synthesis, structure, functionalization and molecular recognition. Accounts of Chemical Research, 45(2), 182–195.PubMedCrossRefGoogle Scholar
  53. 53.
    Iwanek, W., & Wzorek, A. (2009). Introduction to the chirality of resorcinarenes. Mini-Reviews in Organic Chemistry, 6, 398–411.CrossRefGoogle Scholar
  54. 54.
    Hauke, F., Myles, A. J., & Rebek, J., Jr. (2005). Lower rim mono-functionalization of resorcinarenes. Chemical Communication, 33, 4164–4166.CrossRefGoogle Scholar
  55. 55.
    Utomo, S. B., Saputro, A. N. C., & Rinanto, Y. (2016). Functionalization of C-4-methoxyphenylcalix[4]resorcinarene with several ammonium compounds. IOP Science, 107, 1–10.Google Scholar
  56. 56.
    Saito, S., Rudkevich, D. M., & Rebek, J., Jr. (1999). Lower rim functionalized resorcinarenes: Useful modules for supramolecular chemistry. Organic Letters, 1(8), 1241–1244.PubMedCrossRefGoogle Scholar
  57. 57.
    Jayswal, K. P., Patel, J. R., Patel, V. B., & Patel, M. H. (2008). A new approach towards synthesis of some novel “upper rim” functionalized calix[4]resorcinarene Schiff-bases. Acta Chimica Slovenica, 55, 302–307.Google Scholar
  58. 58.
    Cram, D. J., Karbach, S., Kim, H., Knobler, C. B., Maverick, E. F., Ericson, J. L., & Helgeson, R. C. (1988). Host-guest complexation. 46. Cavitands as open molecular vessels form solvates. Journal of the American Chemical Society, 110(7), 2229–2237.CrossRefGoogle Scholar
  59. 59.
    Osamu, M., Kazumichi, A., Tadahiko, N., & Seiji, S. (1990). Diazo-coupling with a resorcinol-based cyclophane: A new water-soluble host with a deep cleft. Chemistry Letters, 19(7), 1219–1222.CrossRefGoogle Scholar
  60. 60.
    Fransen, J. R., & Dutton, P. J. (1995). Cation binding and conformation of octafunctionalized calix[4]resorcinarenes. Canadian Journal of Chemistry, 73, 2217–2223.CrossRefGoogle Scholar
  61. 61.
    McIldowie, M. J., Mocerino, M., & Ogden, M. I. (2010). A brief review of Cn-symmetric calixarenes and resorcinarenes. Supramolecular Chemistry, 22(1), 13–39.CrossRefGoogle Scholar
  62. 62.
    Castillo-Aguirre, A., Rivera-Monroy, Z., & Maldonado, M. (2017). Selective O-alkylation of the crown conformer of tetra(4-hydroxyphenyl)calix[4]resorcinarene to the corresponding tetraalkyl ether. Molecules, 22, 1–11.CrossRefGoogle Scholar
  63. 63.
    Wiegmann, S., & Mattay, J. (2011). Inherently chiral resorcin[4]arenes: A new concept for improving the functionality. Organic Letters, 13(12), 3226–3228.PubMedCrossRefGoogle Scholar
  64. 64.
    Boerrigter, H., Verboom, W., van Hummel, G. J., Harkema, S., & Reinhoudt, D. (1996). Selective functionalization of resorcinarene cavitands; single crystal X-ray structure of a distally functionalized cavitand. Tetrahedron Letters, 37(29), 5167–5170.CrossRefGoogle Scholar
  65. 65.
    Irwin, J. L., & Sherburn, M. S. (2000). Optimized synthesis of cavitand phenol bowls. Journal of Organic Chemistry, 65, 5846–5848.PubMedCrossRefGoogle Scholar
  66. 66.
    Barrett, E. S., Irwin, J. L., Turner, P., & Sherburn, M. S. (2001). Efficient distal-difunctionalization of cavitand bowls. Journal of Organic Chemistry, 66, 8227–8229.PubMedCrossRefGoogle Scholar
  67. 67.
    Lukin, O. V., Pirozhenko, V. V., & Shivanyuk, A. N. (1995). Selective acylation of calixresorcinolarene. Tetrahedron Letters, 36(42), 7725–7728.CrossRefGoogle Scholar
  68. 68.
    Shivanyuk, A., Paulus, E. F., Böhmer, V., & Vogt, W. (1998). Selective derivatizations of resorcarenes. 4. General methods for the synthesis of C2v-symmetrical derivatives. Journal of Organic Chemistry, 63(19), 6448–6449.CrossRefGoogle Scholar
  69. 69.
    Hisatoshi, K., Hidekazu, N., Hideki, N., Tsuyoshi, U., Kazuhiro, K., & Osamu, M. (1997). Regioselective distal-dibromination of calix[4]resorcinarene. Chemistry Letters, 26(2), 185–186.CrossRefGoogle Scholar
  70. 70.
    Abis, L., Dalcanale, E., Du Vosel, A., & Spera, S. (1988). Structurally new macrocycles from the resorcinol-aldehyde condensation. Configurational and conformational analyses by means of dynamic NMR, NOE and T1 experiments. Journal of Organic Chemistry, 53, 5475–5479.CrossRefGoogle Scholar
  71. 71.
    Shahgaldian, P., Da Silva, E., Coleman, A. W., Rather, B., & Zaworotko, M. J. (2003). Para-acyl-calixarene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters. International Journal of Pharmaceutics, 253(1–2), 23–38.PubMedCrossRefGoogle Scholar
  72. 72.
    Mora-Huertas, C. E., Garrigues, O., Fessi, H., & Elaissari, A. (2012). Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: Comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 80(1), 235–239.PubMedCrossRefGoogle Scholar
  73. 73.
    Nik, A. M., Langmaid, S., & Wright, A. J. (2012). Nonionic surfactant and interfacial structure impact crystallinity and stability of β-carotene loaded lipid nanodispersions. Journal of Agricultural and Food Chemistry, 60(16), 4126–4135.PubMedCrossRefGoogle Scholar
  74. 74.
    Gualbert, J., Shahgaldian, P., Lazar, A., & Coleman, A. W. (2004). Solid lipid nanoparticles (SLNs): Preparation and properties of calix[4]resorcinarene derived systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 48(1–2), 37–44.CrossRefGoogle Scholar
  75. 75.
    Siekmann, B., & Westesen, K. (1992). Submicron-sized parenteral carrier systems based on solid lipids. Pharmaceutical and Pharmacological Letters, 1, 123–126.Google Scholar
  76. 76.
    Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2011). Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods: Critical comparison. Advances in Colloid and Interface Science, 163(2), 90–122.PubMedCrossRefGoogle Scholar
  77. 77.
    Salorinne, K., & Nissinen, M. (2006). Novel tetramethoxy resorcinarene bis-crown ethers. Organic Letters, 8(24), 5473–5476.PubMedCrossRefGoogle Scholar
  78. 78.
    Helttmen, K., Salorinne, K., Barboza, T., Barbosa, H. C., Suhonen, A., & Nissinen, M. (2012). Cation binding resorcinarene bis-crowns: The effect of lower rim alkyl chain length on crystal packing and solid lipid nanoparticles. New Journal of Chemistry, 36(3), 789–795.CrossRefGoogle Scholar
  79. 79.
    Iwanek, W., Urbaniak, M., Gawdzik, B., & Schurig, V. (2003). Synthesis of enantiomerically and diastereomerically pure oxazaborolo-benzoxazaborininone derivatives of resorcinarene from L-proline. Tetrahedron: Asymmetry, 14(18), 2787–2792.CrossRefGoogle Scholar
  80. 80.
    Ehrler, S., Pieles, U., Wirth-Heller, A., & Shahgaldian, P. (2007). Surface modification of resorcinarene based self-assembled solid lipid nanoparticles for drug targeting. Chemical Communication, 25, 2605–2607.CrossRefGoogle Scholar
  81. 81.
    Choi, S., Kim, W., & Kim, J. (2003). Surface modification of functional nanoparticles for controlled drug delivery. Journal of Dispersion Science and Technology, 24(3–4), 475–487.CrossRefGoogle Scholar
  82. 82.
    Purcar, V., Somoghi, R., Nitu, S. G., Nicolae, C., Alexandrescu, E., Gîfu, I. C., Gabor, A. R., Stroescu, H., Ianchi, R., Căprărescu, S., & Cinteză, L. O. (2017). The effect of different coupling agents on nano-ZnO materials obtained via the sol–gel process. Nanomaterials, 7(439), 1–13.Google Scholar
  83. 83.
    Dalod, A. R. M., Henriksen, L., Grande, T., & Einarsrud, M. (2017). Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: The role of the silane coupling agents. Beilstein Journal of Nanotechnology, 8, 304–312.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology, 6(1), 9–26.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sen, T., & Bruce, I. J. (2012). Surface engineering of nanoparticles in suspension for particle based bio-sensing. Scientific Reports, 2(564), 1–6.Google Scholar
  86. 86.
    Jie, K., Zhou, Y., Yaoa, Y., & Huang, F. (2015). Macrocyclic amphiphiles. Chemical Society Reviews, 44(11), 3568–3587.PubMedCrossRefGoogle Scholar
  87. 87.
    Shahgaldian, P., Pieles, U., & Hegner, M. (2005). Enantioselective recognition of phenylalanine by a chiral amphiphilic macrocycle at the air-water interface: A copper-mediated mechanism. Langmuir, 21(14), 6503–6507.PubMedCrossRefGoogle Scholar
  88. 88.
    Gualbert, J., Shahgaldian, P., & Coleman, A. W. (2003). Interactions of amphiphilic calix[4]arene-based solid lipid nanoparticles with bovine serum albumin. International Journal of Pharmaceutics, 257(1–2), 69–73.PubMedCrossRefGoogle Scholar
  89. 89.
    Oyarzun-Ampuero, F., Kogan, M. J., Neira-Carrillo, A., & Morales, J. O. (2014). Surface-modified nanoparticles to improve drug delivery. In Dekker encyclopedia of nanoscience and nanotechnology (3rd ed., pp. 1–7). Abingdon: Taylor & Francis.Google Scholar
  90. 90.
    Holgado, M. A., Martin-Banderas, L., Alvarez-Fuentes, J., Fernandez-Arevalo, M. L., & Arias, J. (2012). Drug targeting to cancer by nanoparticles surface functionalized with special biomolecules. Current Medicinal Chemistry, 19(19), 3188–3195.PubMedCrossRefGoogle Scholar
  91. 91.
    Ma, N., Ma, C., Li, C., Wang, T., Tang, Y., Wang, H., Mou, X., Chen, Z., & He, N. (2013). Influence of nanoparticle shape, size and surface functionalization on cellular uptake. Journal of Nanoscience and Nanotechnology, 13(10), 6485–6498.PubMedCrossRefGoogle Scholar
  92. 92.
    Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 64–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Teixeira, M. C., Carbone, C., & Souto, E. B. (2017). Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Progress in Lipid Research, 68, 1–11.PubMedCrossRefGoogle Scholar
  94. 94.
    Singhal, G. B., Patel, R. P., Prajapati, B. G., & Patel, N. A. (2011). Solid lipid nanoparticles and nano lipid carriers: A novel solid lipid based drug carrier. International Research Journal of Pharmacy, 2(2), 40–52.Google Scholar
  95. 95.
    Mariam, J., Sivakami, S., & Dongre, P. M. (2016). Albumin corona on nanoparticles: A strategic approach in drug delivery. Drug Delivery, 23, 2668–2676.PubMedGoogle Scholar
  96. 96.
    Guo, D. S., Wang, K., Wang, Y. X., & Liu, Y. (2012). Cholinesterase-responsive supramolecular vesicle. Journal of the American Chemical Society, 134(24), 10244–10250.PubMedCrossRefGoogle Scholar
  97. 97.
    Wang, K., Guo, D. S., Wang, X., & Liu, Y. (2011). Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano, 5(4), 2880–2894.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 63(1), 185–198.PubMedCrossRefGoogle Scholar
  99. 99.
    Duan, Q., Cao, Y., Li, Y., Hu, X., Xiao, T., Lin, C., Pan, Y., & Wang, L. (2013). pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. Journal of the American Chemical Society, 135(28), 10542–10549.PubMedCrossRefGoogle Scholar
  100. 100.
    Gallego-Yerga, L., Lomazzi, M., Sansone, F., Mellet, C. O., Casnatib, A., & Fernández, J. M. G. (2014). Glycoligand-targeted core-shell nanospheres with tunable drug release profiles from calixarene-cyclodextrin heterodimers. Chemical Communication, 50(56), 7440–7443.CrossRefGoogle Scholar
  101. 101.
    Shivanyuk, A., & Rebek, J., Jr. (2001). Reversible encapsulation by self-assembling resorcinarene subunits. PNAS, 98(14), 7662–7665.PubMedCrossRefGoogle Scholar
  102. 102.
    Liu, Z., Nalluri, S. K. M., & Stoddart, J. F. (2017). Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes. Chemical Society Reviews, 46, 2459–2478.PubMedCrossRefGoogle Scholar
  103. 103.
    Ma, X., & Zhao, Y. (2015). Biomedical applications of supramolecular systems based on host–guest interactions. Chemical Reviews, 115(15), 7794–7839.PubMedCrossRefGoogle Scholar
  104. 104.
    Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2(4), 282–289.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ruckenstein, E., & Li, Z. F. (2005). Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science, 113(1), 43–63.PubMedCrossRefGoogle Scholar
  106. 106.
    Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K., & Dobson, J. (2009). Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 42(22), 1–15.CrossRefGoogle Scholar
  107. 107.
    Ravindran, A., Chandran, P., & Khan, S. S. (2013). Biofunctionalized silver nanoparticles: Advances and prospects. Colloids and Surfaces B: Biointerfaces, 105, 342–352.PubMedCrossRefGoogle Scholar
  108. 108.
    Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions Mathematical Physical & Engineering Sciences, 368(1915), 1333–1383.CrossRefGoogle Scholar
  109. 109.
    Yang, J., Lee, J. Y., & Ying, J. Y. (2011). Phase transfer and its applications in nanotechnology. Chemical Society Reviews, 40(3), 1672–1696.PubMedCrossRefGoogle Scholar
  110. 110.
    Mayya, K. S., & Caruso, F. (2003). Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir, 19(17), 6987–6993.CrossRefGoogle Scholar
  111. 111.
    Wei, Y., Yang, J., & Ying, J. Y. (2010). Reversible phase transfer of quantum dots and metal nanoparticles. Chemical Communication, 46(18), 3179–3181.CrossRefGoogle Scholar
  112. 112.
    Yong, Y., Yan, S., Ying, H., & Chaoguo, Y. (2010). Preparation of resorcinarene-functionalized gold nanoparticles and their catalytic activities for reduction of aromatic nitro compounds. Chinese Journal of Chemistry, 28(5), 705–712.CrossRefGoogle Scholar
  113. 113.
    Wei, A., Stavens, K. B., Pusztay, S. V., & Andres, R. P. (1999). Synthesis and characterization of resorcinarene-encapsulated nanoparticles. MRS Proceedings, 581, 59–63.CrossRefGoogle Scholar
  114. 114.
    Kim, B., Balasubramanian, R., Pe’rez-Segarra, W., Wei, A., Decker, B., & Mattay, J. (2005). Self-assembly of resorcinarene-stabilized gold nanoparticles: Influence of the macrocyclic headgroup. Supramolecular Chemistry, 17(1–2), 173–180.CrossRefGoogle Scholar
  115. 115.
    Hansen, M. N., Chang, L., & Wei, A. (2008). Resorcinarene-encapsulated gold nanorods: Solvatochromatism and magnetic nanoshell formation. Supramolecular Chemistry, 20(1–2), 35–40.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ermakova, A. M., Morozova, J. E., Shalaeva, Y. V., Syakaev, V. V., Nizameev, I. R., Kadirov, M. K., Antipin, I. S., & Konovalov, A. I. (2017). The supramolecular approach to the phase transfer of carboxylic calixresorcinarene-capped silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524, 127–134.CrossRefGoogle Scholar
  117. 117.
    Mishra, D., Kongor, A., Panchal, M., Modi, K., & Jain, V. (2018). Resorcinarene-embedded stable silver nanoparticles: A fluorescent nanoprobe for Pb(II) in water. International Journal for Research in Applied Science & Engineering Technology, 6(1), 1360–1370.CrossRefGoogle Scholar
  118. 118.
    Sergeeva, T. Y., Aida, I., Samigullina, A. I., Gubaidullin, A. T., Irek, R., Nizameev, I. R., Kadirov, M. K., Mukhitova, R. K., Albina, Y., Ziganshina, A. Y., & Konovalov, A. I. (2016). Application of ferrocene-resorcinarene in silver nanoparticle synthesis. RSC Advances, 6(90), 87128–87133.CrossRefGoogle Scholar
  119. 119.
    Tripp, S. L., Pusztay, S. V., Ribbe, A. E., & Wei, A. (2002). Self-assembly of cobalt nanoparticle rings. Journal of the American Chemical Society, 124(27), 7914–7915.PubMedCrossRefGoogle Scholar
  120. 120.
    Zhou, J., Chen, M., & Diao, G. (2013). Assembling gold and platinum nanoparticles on resorcinarene modified graphene and their electrochemical applications. Journal of Materials Chemistry A, 1(6), 2278–2285.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhIndia

Personalised recommendations