Skip to main content

Diagnostic Implications of Creatinine and Urea Metabolism in Critical Illness

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1721 Accesses

Abstract

The serum concentrations of urea and creatinine form the basis of our understanding of renal function and are requested and interpreted by critical care clinicians on a near daily basis for patients admitted to intensive care units (ICUs) worldwide. Changes in creatinine constitute the diagnostic criteria for acute kidney injury (AKI) while urea is commonly used as a marker of dehydration and as a potential trigger for initiation of renal replacement therapy (RRT). However, the interpretation of these routinely measured biomarkers of renal function has been brought under scrutiny as the complex impact of critical illness on the metabolism of urea and creatinine affects their interpretation. A more careful understanding of the changes in creatinine and urea metabolism during acute illness and in survivors of critical care is necessary to better inform decisions on diagnosis, treatment strategies and research of new interventions for AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behre J, Benedict S. Studies in creatine and creatinine metabolism. J Biol Chem. 1922;52:11–33.

    CAS  Google Scholar 

  2. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107–213.

    Article  CAS  Google Scholar 

  3. Brosnan JT, Brosnan ME. Creatine metabolism and the urea cycle. Mol Genet Metab. 2010;100(Suppl 1):S49–52.

    Article  CAS  Google Scholar 

  4. Holmes FL. Hans Krebs and the discovery of the ornithine cycle. Fed Proc. 1980;39:216–25.

    CAS  PubMed  Google Scholar 

  5. Anonymous. Urea metabolism in man. Lancet. 1971;2:1407–8.

    Google Scholar 

  6. Meijer AJ, Lamers WH, Chamuleau RA. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990;70:701–48.

    Article  CAS  Google Scholar 

  7. Withers PC. Urea: diverse functions of a ‘waste’ product. Clin Exp Pharmacol Physiol. 1998;25:722–7.

    Article  CAS  Google Scholar 

  8. Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–600.

    Article  CAS  Google Scholar 

  9. Friedrich O, Reid MB, Van den Berghe G, et al. The sick and the weak: neuropathies/myopathies in the critically ill. Physiol Rev. 2015;95:1025–109.

    Article  CAS  Google Scholar 

  10. Beisel WR, Wannemacher RW. Gluconeogenesis, ureagenesis, and ketogenesis during sepsis. JPEN J Parenter Enteral Nutr. 1980;4:277–85.

    Article  CAS  Google Scholar 

  11. Ohtake Y, Clemens MG. Interrelationship between hepatic ureagenesis and gluconeogenesis in early sepsis. Am J Phys. 1991;260:E453–8.

    CAS  Google Scholar 

  12. Hasselgren PO, Pedersen P, Sax HC, Warner BW, Fischer JE. Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg. 1988;123:992–9.

    Article  CAS  Google Scholar 

  13. Van den Berghe G. On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med. 2016;194:1337–48.

    Article  Google Scholar 

  14. Gunst J, Vanhorebeek I, Casaer MP, et al. Impact of early parenteral nutrition on metabolism and kidney injury. J Am Soc Nephrol. 2013;24:995–1005.

    Article  CAS  Google Scholar 

  15. Griffith DM, Lewis S, Rossi AG, et al. Systemic inflammation after critical illness: relationship with physical recovery and exploration of potential mechanisms. Thorax. 2016;71:820–9.

    Article  Google Scholar 

  16. Arihan O, Wernly B, Lichtenauer M, et al. Blood Urea Nitrogen (BUN) is independently associated with mortality in critically ill patients admitted to ICU. PLoS One. 2018;13:e0191697.

    Article  Google Scholar 

  17. Faisst M, Wellner UF, Utzolino S, Hopt UT, Keck T. Elevated blood urea nitrogen is an independent risk factor of prolonged intensive care unit stay due to acute necrotizing pancreatitis. J Crit Care. 2010;25:105–11.

    Article  CAS  Google Scholar 

  18. Kajimoto K, Minami Y, Sato N, et al. Serum sodium concentration, blood urea nitrogen, and outcomes in patients hospitalized for acute decompensated heart failure. Int J Cardiol. 2016;222:195–201.

    Article  Google Scholar 

  19. Pan SW, Kao HK, Yu WK, et al. Synergistic impact of low serum albumin on intensive care unit admission and high blood urea nitrogen during intensive care unit stay on post-intensive care unit mortality in critically ill elderly patients requiring mechanical ventilation. Geriatr Gerontol Int. 2013;13:107–15.

    Article  Google Scholar 

  20. Beier K, Eppanapally S, Bazick HS, et al. Elevation of blood urea nitrogen is predictive of long-term mortality in critically ill patients independent of “normal” creatinine. Crit Care Med. 2011;39:305–13.

    Article  CAS  Google Scholar 

  21. Bjornsson TD. Use of serum creatinine concentrations to determine renal function. Clin Pharmacokinet. 1979;4:200–22.

    Article  CAS  Google Scholar 

  22. Pickering JW, Ralib AM, Endre ZH. Combining creatinine and volume kinetics identifies missed cases of acute kidney injury following cardiac arrest. Crit Care. 2013;17:R7.

    Article  Google Scholar 

  23. Wells M, Lipman J. Measurements of glomerular filtration in the intensive care unit are only a rough guide to renal function. S Afr J Surg. 1997;35:20–3.

    CAS  PubMed  Google Scholar 

  24. Thiele RH, Isbell JM, Rosner MH. AKI associated with cardiac surgery. Clin J Am Soc Nephrol. 2015;10:500–14.

    Article  Google Scholar 

  25. Cocchetto DM, Tschanz C, Bjornsson TD. Decreased rate of creatinine production in patients with hepatic disease: implications for estimation of creatinine clearance. Ther Drug Monit. 1983;5:161–8.

    Article  CAS  Google Scholar 

  26. Piper RD, Pitt-Hyde M, Li F, Sibbald WJ, Potter RF. Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med. 1996;154:931–7.

    Article  CAS  Google Scholar 

  27. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:545–8.

    Article  Google Scholar 

  28. Wilson FP, Sheehan JM, Mariani LH, Berns JS. Creatinine generation is reduced in patients requiring continuous venovenous hemodialysis and independently predicts mortality. Nephrol Dial Transplant. 2012;27:4088–94.

    Article  CAS  Google Scholar 

  29. Clark WR, Mueller BA, Kraus MA, Macias WL. Quantification of creatinine kinetic parameters in patients with acute renal failure. Kidney Int. 1998;54:554–60.

    Article  CAS  Google Scholar 

  30. Pesola GR, Akhavan I, Carlon GC. Urinary creatinine excretion in the ICU: low excretion does not mean inadequate collection. Am J Crit Care. 1993;2:462–6.

    CAS  PubMed  Google Scholar 

  31. Schiller WR, Long CL, Blakemore WS. Creatinine and nitrogen excretion in seriously ill and injured patients. Surg Gynecol Obstet. 1979;149:561–6.

    CAS  PubMed  Google Scholar 

  32. Carlotti AP, Bohn D, Matsuno AK, Pasti DM, Gowrishankar M, Halperin ML. Indicators of lean body mass catabolism: emphasis on the creatinine excretion rate. QJM. 2008;101:197–205.

    Article  CAS  Google Scholar 

  33. Saour M, Klouche K, Deras P, Damou A, Capdevila X, Charbit J. Assessment of modification of diet in renal disease equation to predict reference serum creatinine value in severe trauma patients: lessons from an observational study of 775 cases. Ann Surg. 2016;263:814–20.

    Article  Google Scholar 

  34. Weitzel LR, Sandoval PA, Mayles WJ, Wischmeyer PE. Performance-enhancing sports supplements: role in critical care. Crit Care Med. 2009;37:S400–9.

    Article  CAS  Google Scholar 

  35. Puthucheary ZA, Astin R, Mcphail MJW, et al. Metabolic phenotype of skeletal muscle in early critical illness. Thorax. 2018;73:926–35.

    Article  Google Scholar 

  36. Prowle JR, Ishikawa K, May CN, Bellomo R. Renal blood flow during acute renal failure in man. Blood Purif. 2009;28:216–25.

    Article  Google Scholar 

  37. Uchino S, Bellomo R, Goldsmith D. The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J. 2012;5:187–91.

    Article  CAS  Google Scholar 

  38. Schetz M, Gunst J, Van den Berghe G. The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. Intensive Care Med. 2014;40:1709–17.

    Article  CAS  Google Scholar 

  39. Prowle JR, Kolic I, Purdell-Lewis J, Taylor R, Pearse RM, Kirwan CJ. Serum creatinine changes associated with critical illness and detection of persistent renal dysfunction after AKI. Clin J Am Soc Nephrol. 2014;9:1015–23.

    Article  CAS  Google Scholar 

  40. Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB. Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr. 1996;63:863–9.

    Article  CAS  Google Scholar 

  41. Thongprayoon C, Cheungpasitporn W, Kashani K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J Thorac Dis. 2016;8:E305–11.

    Article  Google Scholar 

  42. Ravn B, Prowle JR, Mårtensson J, Martling CR, Bell M. Superiority of serum cystatin c over creatinine in prediction of long-term prognosis at discharge from ICU. Crit Care Med. 2017;45:e932–40.

    Article  CAS  Google Scholar 

  43. Kashani KB, Frazee EN, Kukrálová L, et al. Evaluating muscle mass by using markers of kidney function: development of the sarcopenia index. Crit Care Med. 2017;45:e23–9.

    Article  Google Scholar 

  44. Kim SW, Jung HW, Kim CH, Kim KI, Chin HJ, Lee H. A new equation to estimate muscle mass from creatinine and cystatin c. PLoS One. 2016;11:e0148495.

    Article  Google Scholar 

  45. Prowle J, Forni L. Functional biomarkers. In: Ronco C, Bellomo R, Kellum J, Ricci Z, editors. Critical care nephrology. Philadelphia: Elsevier; 2019. p. 141–145.e141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Prowle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haines, R.W., Prowle, J.R. (2019). Diagnostic Implications of Creatinine and Urea Metabolism in Critical Illness. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics