Skip to main content

Sentinel-1 for Object-Based Delineation of Built-Up Land Within Urban Areas

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2017)

Abstract

This work deals with the delineation of built-up land within urban areas from Sentinel-1 data using object-based image analysis. The produced layers allow differentiation between built-up and non-built-up area. Additionally a layer is produced, presenting different types of built-up densities. The results are visually compared with a standardized product of the Copernicus earth observation program, the Copernicus High Resolution Layer Imperviousness Degree. For evaluation of the accuracy, the European Settlement Map 2016 was chosen as a reference data set. Results from the built-up density analysis are visually compared with reference layer generated from open government data. The results reveal the suitability of Sentinel-1 data for the delineation of built-up land within urban areas. The quality of the produced layers (built-up land map and built-up density map) is comparable to standardized products that are based on data from optical sensors e.g. Copernicus High Resolution Layer Imperviousness Degree, European Settlement Map 2016 or high resolution building density maps respectively. The accuracy of the built-up land map (BULM) is equal (78.2%) to the one of the settlement layer produced by use of the ISODATA cluster algorithm [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehner, A., Naeimi, V., Steinnocher, K.: Sentinel-1 for urban areas - comparison between automatically derived settlement layers from sentinel-1 data and copernicus high resolution information layers. In: Ragia, L., Rocha, J.G., Laurini, R. (eds.) 2017 3rd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 43–49. SCITEPRESS - Science and Technology Publications, Setubal (2017)

    Google Scholar 

  2. EEA: Corine Land Cover, p. 163. European Environment Agency (2000)

    Google Scholar 

  3. Ben-Asher, Z.: HELM-harmonised European land monitoring: findings and recommendations of the HELM project. Tel-Aviv, Israel (2013)

    Google Scholar 

  4. Sannier, C., Gallego, J., Dahmer, J., Smith, G., Dufourmont, H., Pennec, A.: Validation of Copernicus high resolution layer on imperviousness degree for 2006, 2009 and 2012. In: 12th International Symposium of Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Montpellier, France, 12th edn, pp. 5–8 (2016)

    Google Scholar 

  5. Ciobotaru, N., et al.: Mapping romanian wetlands – a geographical approach, p. 14, Tulcea, Romania (2016)

    Google Scholar 

  6. Lefebvre, A., Picand, P.-A., Sannier, C.: Mapping tree cover in European cities: comparison of classification algorithms for an operational production framework. In: 2015 Joint Urban Remote Sensing Event, pp. 1–4. IEEE (2015)

    Google Scholar 

  7. Mücher, C.A., Hennekens, S.M., Schaminee, J.H.J., Halada, L., Halabuk, A.: Modelling the spatial distribution of EUNIS forest habitats based on vegetation relevés and Copernicus HRL. European Topic Centre Biological Diversity (2015)

    Google Scholar 

  8. Hennig, E.I., Schwick, C., Soukup, T., Orlitová, E., Kienast, F., Jaeger, J.A.: Multi-scale analysis of urban sprawl in Europe: towards a European de-sprawling strategy. Land Use Policy 49, 483–498 (2015)

    Article  Google Scholar 

  9. Steinnocher, K., Köstl, M., Weichselbaum, J.: Grid-based population and land take trend indicators – new approaches introduced by the geoland2 core information service for spatial planning. In: NTTS Conference, Brussels (2011)

    Google Scholar 

  10. European Commission: ESM 2016 European Settlement Map (2016)

    Google Scholar 

  11. Florczyk, A.J.: A new European settlement map from optical remotely sensed data. IEEE J. Sele. Top. Appl. Earth Obs. Remote Sens. 9(5), 1978–1992 (2016)

    Article  Google Scholar 

  12. D’Aria, D., Piantanida, R., Valentino, A., Riva, D.: Freesar, an innovative SAR data processing framework. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1214–1216. IEEE (2016)

    Google Scholar 

  13. Attema, E., et al.: Sentinel-1-the radar mission for GMES operational land and sea services. ESA Bull. 131, 10–17 (2007)

    Google Scholar 

  14. European Space Agency: Sentinel-1 User Handbook. ESA (2013)

    Google Scholar 

  15. Naeimi, V., Elefante, S., Cao, S., Wagner, W., Dostalova, A., Bauer-Marschallinger, B.: Geophysical parameters retrieval from sentinel-1 SAR data: a case study for high performance computing at EODC. In: 24th High Performance Computing Symposium, p. 10. Society for Computer Simulation International (2016)

    Google Scholar 

  16. Bauer-Marschallinger, B., Sabel, D., Wagner, W.: Optimisation of global grids for high-resolution remote sensing data. Comput. Geosci. 72, 84–93 (2014)

    Article  Google Scholar 

  17. Langanke, T.: GIO land (GMES/copernicus initial operations land) high resolution layers (HRLs) – summary of product specifications (2013)

    Google Scholar 

  18. MA 18 - Stadtentwicklung und Stadtplanung: Geo data city 14.1. BIS 25.3.2011. Geoinformation und Stadtentwicklung in Wien, Vienna (2011)

    Google Scholar 

  19. Madner, V., et al.: Potenziale im Raumordnungs- und Baurecht für energetisch nachhaltige Stadtstrukturen – ProBateS. Schriftenreihe 36, p. 142. BMVIT (2016)

    Google Scholar 

  20. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)

    Article  Google Scholar 

  21. Blaschke, T., et al.: Geographic object-based image analysis–towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 180–191 (2014)

    Article  Google Scholar 

  22. Trimble Documentation: Trimble eCognition® developer version 9.2.1 reference book. Trimble Germany GmbH, Munich (2016)

    Google Scholar 

  23. Baatz, M., Schäpe, A.: Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: XII Angewandte Geographische Informationsverarbeitung, pp. 12–23. Wichmann-Verlag, Heidelberg (2000)

    Google Scholar 

  24. Zhou, H., Wu, J., Zhang, J.: Digital Image Processing: Part II. Bookboon, London (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Lehner .

Editor information

Editors and Affiliations

Appendix

Appendix

eCognition Developer 9.2 Ruleset:

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehner, A., Naeimi, V., Steinnocher, K. (2019). Sentinel-1 for Object-Based Delineation of Built-Up Land Within Urban Areas. In: Ragia, L., Laurini, R., Rocha, J. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2017. Communications in Computer and Information Science, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-030-06010-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06010-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06009-1

  • Online ISBN: 978-3-030-06010-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics