Skip to main content

Interaction of Laser Radiation with Explosives, Applications and Perspectives

  • Chapter
  • First Online:
Progress in Photon Science

Abstract

This chapter provides a brief overview of the main directions in research and application of the interaction of laser radiation with explosives. Historically the first application of such interaction based on thermal initiation of explosives is briefly characterized. The main methods of remote detection of explosives using laser radiation are listed. Particular attention is paid to the areas of research that have been recently formed such as spectral selective resonance interaction of laser radiation with explosives and explosives modified by nano-additives. It was noted that depending on the choice of the optical absorption band of the explosives, its excitation can lead either to the effective activation of an explosive or to its decomposition, which is not accompanied by a significant thermal effect. The latter case can be used for remote detection of the explosives and, partly, for passivation of their surface. Finally, it was demonstrated that the absorbing and refractive light nano-additives are able to reduce the threshold intensity of initiation of explosives by laser radiation, while keeping the resistance of explosives to impact or thermal effects that provides the safety conditions of working with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Gifford, W.G. Proud, J.E. Field, Development of a method for qualification of hot-spots. Thermochim. Acta 384, 285–290 (2002)

    Article  Google Scholar 

  2. Y.-C. Liau et al., Laser-induced ignition of RDX monopropellant. Combust. Flame 126, 1680–1698 (2001)

    Article  Google Scholar 

  3. J.M. McAfee, The deflagration to detonation transition, in Shock Wave Science and Technology Reference Library. 5: Non-Shock Initiation of Explosives, ed. by B.W. Asay (Springer, Berlin, 2010), pp. 483–535

    Google Scholar 

  4. M.D. Furnish, N.N. Thadhani, Y. Horie, Am. Inst. Phys. (Melville, NY) 878–881 (2002)

    Google Scholar 

  5. M.S. Abdulazeem et al., Int. J. Therm. Sci. 50, 2117–2121 (2011)

    Article  Google Scholar 

  6. S. Ruiqi, W. Lizhi, Z. Wei, Z. Haonan, Laser ablation of energetic materials, in Laser Ablation—From Fundamentals to Applications. http://dx.doi.org/10.5772/intechopen.71892

  7. L.A. Skvortsov, Laser methods for detection of the explosives traces on the surfaces of distant objects. Quantum Electron. 42(1) (2012)

    Article  ADS  Google Scholar 

  8. L.A. Skvortsov, E.M. Maksimov, Quantum Electron. 40(7), 565 (2010)

    Article  ADS  Google Scholar 

  9. D. Kremers, L. Radziemsky, Laser-Indused Breakdown Spectroscopy (Technosphere, Moscow, 2009)

    Google Scholar 

  10. A. Popov, T. Labutin, N. Zorov, Mosc. Univ. Chem. Bull. 50(6), 453 (2009)

    Google Scholar 

  11. F. De Lucia, A. Samuels, R. Harmon, R. Walters, K. McNesby, A. LaPointe, R. Winkel, A. Miziolek, IEEE Sens. J. 5, 681 (2005)

    Article  ADS  Google Scholar 

  12. J. Gottfried, F.D. Lucia, C.J. Munson, A. Miziolek, Anal. Bioanal. Chem. 395, 283 (2009)

    Google Scholar 

  13. V. Demtreder, Laser Spectroscopy. Basic Principles and Experimental Technique (Science, Moscow, 1985)

    Google Scholar 

  14. S. Sharma, P. Lucey, M. Ghosh, H. Hubble, K. Horton, Spectrochim. Acta A 59, 2391 (2003)

    Article  ADS  Google Scholar 

  15. J. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. Sharma, S. Angel, Spectrochim. Acta A 61, 2288 (2005)

    Article  ADS  Google Scholar 

  16. D. Tuschel, A. Mikholin, B. Lemoff, S. Asher, Appl. Spectrosc. 64(4), 425 (2010)

    Article  ADS  Google Scholar 

  17. K.L. Gares et al., Review of explosive detection methods and the emergence of standoff deep UV resonance Raman. J. Raman Spectrosc. 47, 124–141 (2016)

    Article  ADS  Google Scholar 

  18. B.H. Hokra et al., Single-shot stand-off chemical identification of powers using random Raman lasing. PNAS 111(34), 12320–12324 (2014)

    Article  ADS  Google Scholar 

  19. S.A. Ahmanov, N.I. Koroteev, UFN 123, 405 (1977)

    Article  Google Scholar 

  20. T. Arusi-Parpar, D. Heflinger, R. Lavi, Appl. Opt. 40, 6677 (2001)

    Article  ADS  Google Scholar 

  21. T. Arusi-Parpar, R. Lavi, Remote detection of explosives by enhanced pulsed laser photodissotiation/laser-induced fluorescence method, in Paper Presented at the NA TO Advanced Research Workshop on Stand-off Detection of Suicide Bombers and Mobile Subjects Pfinztal (2006), pp. 13–14

    Google Scholar 

  22. C. Wynn, S. Palmacci, R. Kunz, M. Rothshild, Lincoln Lab. J. 17(2), 27 (2008)

    Google Scholar 

  23. C. Wynn, R. Palmacci, K. Kunz, K. Clow, M. Rothshild, Proc. SPIE Int. Soc Opt. Eng. 6954, 695407 (2008)

    Google Scholar 

  24. C. Wynn, R. Palmacci, K. Kunz, K. Clow, M. Rothshild, Appl. Opt. 37(31), 5767 (2008)

    Article  ADS  Google Scholar 

  25. J. White, F. Akin, H. Oser, R. Crosley, Appl. Opt. 50(1), 74 (2011)

    Article  ADS  Google Scholar 

  26. C. Bauer, P. Geiser, J. Burgmeier, J. Holl, W. Schade, Appl. Phys. B Lasers Opt. 85, 251 (2006)

    Google Scholar 

  27. C. Bauer, J. Burgmeier, C. Bohling, W. Schade, J.C. Holl, in Proceedings of the NATO Advanced Research Workshop on Stand-off Detection of Suicide-Bombers and Mobile Subjects (Springer, The Netherlands, 2006), p. 27

    Google Scholar 

  28. U. Willer, M. Saraji, A. Khorsandi, P. Geisher, W. Schade, Opt. Lasers Eng. 44, 699 (2006)

    Article  Google Scholar 

  29. C. Bauer, A. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Mffller, G. Holl, Appl. Phys. B 92(3), 327 (2008)

    Article  ADS  Google Scholar 

  30. C. Bauer, U. Willer, W. Schade, Opt. Eng. 49, 111126 (2010)

    Article  ADS  Google Scholar 

  31. D. Edward, A. Krechetov, A. Mitrofanov, D. Nurmukhametov, M. Kuklja, J. Phys. Chem. C 115, 6893–6901 (2011)

    Google Scholar 

  32. Y. Sun, X. Tao, Y. Shu, F. Zhong, UV-induced photodecomposition of 2,2′, 4,4′, 6,6′-hexanitrostillbene (HNS), Mater. Sci.-Pol. 31(3), 306–311 (2013), http://www.materialsscience.pwr.wroc.pl/. https://doi.org/10.2478/s13536-013-0105-9

    Article  ADS  Google Scholar 

  33. S. Kakar et al., Phys. Rev. B. 62, 15666 (2000)

    Article  ADS  Google Scholar 

  34. J.W. McDonald et al., J. Energ. Mater. 19, 101 (2001)

    Article  Google Scholar 

  35. A.S. Tverjanovich, A.O. Averyanov, M.A. Ilyushin, YuS Tverjanovich, A.V. Smirnov, Effect of laser radiation on tetrazolate ammine cobalt III complexes. Bull. SpbSIT (TU) 26(52), 3–7 (2014)

    Google Scholar 

  36. A.S. Tverjanovich, A.O. Averyanov, M.A. Ilyushin, YuS Tverjanovich, A.V. Smirnov, The Raman spectra of nitrotetrazolo(lato) ammine cobalt III perchlorates. Bull. SpbSIT (TU) 27(53), 8–10 (2014)

    Google Scholar 

  37. A.S. Tverjanovich et al., Universum. 12(19) (2015)

    Google Scholar 

  38. Int. J. Energ. Mater. Chem. Propuls. 15(2), 113–122 (2016)

    Google Scholar 

  39. G.O. Abdrashitov, A.O. Aver’yanov, M.D. Bal’makov, M.A. Ilyushin, A.S. Tverjanovich, Yu.S. Tver’yanovich, Decomposition of Pentaammineaquacobalt (III) Perchlorate under laser radiation action. Russ. J. Gen. Chem. 87(7), 1451–1455 (2017)

    Google Scholar 

  40. M.A. Ilyushina, Yu.S. Tverjanovich, A.S. Tverjanovich, A.O. Aver’yanov, A.V. Smirnov, I.V. Shugalei, On the mechanism of Cobalt(III) aminates pyrolysis. Russ. J. Gen. Chem. 87(11), 2600–2604 (2017)

    Article  Google Scholar 

  41. A.S. Tverjanovicha, A.O. Aver’yanov, M.A. Ilyshin, Yu.S. Tverjanovich, A.V. Smirnov, Decomposition of Cobalt(III) Nitrotetrazolato Amminates under the action of laser light. Russ. J. Gen. Chem. 88(2), 226–231 (2017)

    Article  Google Scholar 

  42. M.A. Ilyushin, A.V. Smirnov, V.N. Andreev, I.V. Tselinskii, I.V. Shugalei, O.M Nesterova. Russ. J. Gen. Chem. 85(13), 1620 (2015)

    Google Scholar 

  43. A.V. Smirnov, M.A. Ilyushin, I.V. Tselinskii, Synthesis of Cobalt(III) Ammine complexes as explosives for safe taking charges. Russ. J. Appl. Chem. 77(5), 794–796 (2004)

    Article  Google Scholar 

  44. M.A. Ilyushin, A.M. Sudarikov, I.V. Tselinskii, Metallic Complexes in High-Energy Materials (LGU im A. S. Pushkina Publ., St. Petersburg, 2010), p. 188

    Google Scholar 

  45. M.A. Ilyushin, I.V. Tselinskii, A.A. Kotomin, High Power Substances for Arsenal of Initiation (SPbGTI (TU) Publ., St. Petersburg, 2013), p. 176

    Google Scholar 

  46. Int. J. Energ. Mater. Chem. Propuls. 15(2), 113–122 (2016)

    Google Scholar 

  47. Eng. J. Gun. Than. 88(2) (2017)

    Google Scholar 

  48. JTh Kloprogge, D. Wharton, L. Hickey et al., Infrared and Raman study of interlayer anions CO32−, NO3, SO42− and ClO4 in Mg/Al-hydrotalcite. Am. Miner. 87(5–6), 623–629 (2002)

    Article  ADS  Google Scholar 

  49. E. Ingier-Stocka, M. Maciejewski, Thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O: I. Identification of the solid products. Thermochim. Acta. 354, 45–57 (2000)

    Google Scholar 

  50. E. Mikulia, A. Migdal-Mikulia, N.S. Gorskaa Wrobelb, J. Sciesinskic, E. Sciesinskac, Phase transition and molecular motions in [Co(MH3)6](ClO4)3 studied by differential scanning calorimetry and infrared spectroscopy. J. Mol. Struct. 651–653 (2003)

    Google Scholar 

  51. Sigma-Aldrich, Catalog of Raman spectra, Hexamminecobalt (III) chloride (2012)

    Google Scholar 

  52. H.A. Block, Vibrational study of the hexamminecobalt (III) ion. Trans. Faraday Soc. 55, 867–875 (1959)

    Article  Google Scholar 

  53. V.K. Golubev, M.A. Ilyushin, The primary mechanism of decomposition of nitrotetrazolium of cobalt(III)//Doha. 87(2), 312 (2017)

    Google Scholar 

  54. V.K. Golubev, M.A. Ilyushin, Primary decomposition mechanism of Cobalt (III) Nitrotetrazolatoammine complexes. Russ. J. Gen. Chem. 87, 286 (2017)

    Article  Google Scholar 

  55. A.S. Tverjanovich, A.O. Aver’yanov, M.A. Ilyushin, YuS Tverjanovich, A.V. Smirnov, Russ. J. Appl. Chem. 88(2), 226 (2015)

    Article  Google Scholar 

  56. A.S. Tverjanovich, e.a. Patent RF 2636525 (2016)

    Google Scholar 

  57. M.A. Ilyushin et al., Effect of additives of ultra fine carbon particles on the laser initiation threshold of a polymer is a photosensitive explosive composition. Chem. Fiz 24(10), 49–56 (2005)

    Google Scholar 

  58. M. Harkoma, Confinement in the diode laser ignition of energetic materials, Thesis for the degree of Doctor of Technology to be presented with due permission for public examination and criticism in Sahkotalo Building, Auditorium S1, at Tampere University of Technology, 2010

    Google Scholar 

  59. A.V. Kalenskii et al., Paradox of small particles in the pulsed laser initiation of explosive decomposition. Combust. Explos. Shock. Waves 52(2), 234–240 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, project no. 16-29-01056-ofi_m. Measurements were partly made at the resource center of St. Petersburg State University “Optical and Laser Methods for Analysis of Substances”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Tverjanovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tverjanovich, Y., Tverjanovich, A., Averyanov, A., Panov, M., Ilyshin, M., Balmakov, M. (2019). Interaction of Laser Radiation with Explosives, Applications and Perspectives. In: Yamanouchi, K., Tunik, S., Makarov, V. (eds) Progress in Photon Science. Springer Series in Chemical Physics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-05974-3_25

Download citation

Publish with us

Policies and ethics