Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 407 Accesses

Abstract

In the last four decades, one of the most ubiquitous and fruitful platforms for condensed matter physics experiments was the 2D electron gas (2DEG) system embedded in GaAs/AlGaAs heterostructures. Such heterostructures and the use of modulation doping leads to a system of electrons that are free to move with incredible high mobility in the x-y plane while they have no motion in the z-direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first method of a single interface is simply referred to as GaAs/AlGaAs 2DEG while the second method of GaAs sandwitched between two AlGaAs regions is referred to as a quantum well heterostructure.

  2. 2.

    Note that these eigenstates are a result of a specific choice of gauge for the vector potential. Other gauge choices would lead to other results such as switching the roles of x and y (this is obvious as there is complete symmetry between x and y in our discussion so far), but this would not lead to any difference in our discussion

References

  1. Umansky, V., Heiblum, M.: MBE growth of high-mobility 2DEG. In: Molecular Beam Epitaxy, 121–137. Elsevier (2013) https://doi.org/10.1016/b978-0-12-387839-7.00006-3

    Chapter  Google Scholar 

  2. Hall, E.H.: On a new action of the magnet on electric currents. Source Am. J. Math. 2, 287–292 (1879)

    Article  MathSciNet  Google Scholar 

  3. Klitzing, K. V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  4. Ilani, S., et al.: The microscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004)

    Article  ADS  Google Scholar 

  5. Chklovskii, D.B., Shklovskii, B.I., Glazman, L.I.: Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992)

    Article  ADS  Google Scholar 

  6. Tsui, D.C., Stormer, H.L., Gossard, A.C.: Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  Google Scholar 

  7. Laughlin, R.B.: Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  ADS  Google Scholar 

  8. Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982)

    Article  ADS  Google Scholar 

  9. Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dolev, M., Heiblum, M., Umansky, V., Stern, A., Mahalu, D.: Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008)

    Article  ADS  Google Scholar 

  11. Bid, A., et al.: Observation of neutral modes in the fractional quantum Hall effect regime. In: AIP Conference Proceedings 1399, 633–634 (2011)

    Google Scholar 

  12. Willett, R. L., Pfeiffer, L. N., West, K. W.: Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proc. Natl. Acad. Sci. U. S. A. 106, 8853–8 (2009)

    Article  ADS  Google Scholar 

  13. Banerjee, M., et al.: Observation of half-integer thermal Hall conductance. arXiv:1710.00492 (2017)

  14. Kane, C.L., Fisher, M.P.A., Polchinski, J.: Randomness at the edge: theory of quantum Hall transport at filling ν = 2/3. Phys. Rev. Lett. 72, 4129–4132 (1994)

    Article  ADS  Google Scholar 

  15. Protopopov, I.V., Gefen, Y., Mirlin, A.D.: Transport in a disordered ν = 2∕3 fractional quantum Hall junction. Ann. Phys. (N. Y) 385, 287–327 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bid, A., et al.: Observation of neutral modes in the fractional quantum Hall regime. Nature 466 (2010)

    Article  ADS  Google Scholar 

  17. Inoue, H., et al.: Proliferation of neutral modes in fractional quantum Hall states. Nat. Commun. 5, 4067 (2014)

    Article  Google Scholar 

  18. Clarke, D.J., Alicea, J., Shtengel, K.: Exotic non-abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonatan Cohen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cohen, Y. (2018). The Quantum Hall Effect. In: A New Platform for Edge Mode Manipulations in the Quantum Hall Effect. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-05943-9_2

Download citation

Publish with us

Policies and ethics