Sliding Mode Impedance Controlled Smart Fingered Microgripper for Automated Grasp and Release Tasks at the Microscale

  • Bilal KomatiEmail author
  • Cédric Clévy
  • Philippe Lutz
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 530)


The grasp and release of objects have been widely studied in robotics. At the microscale, this problem becomes more difficult due to the microscale specificities which are notably manifested by the high dynamics of microsystems, their small inertia, their fragility, the predominance of surface forces and the high complexity of integrating adapted sensors.

In this paper, the problem of the grasp/release task is considered at the microscale. A new nonlinear controller design based on Sliding Mode Impedance Control (SMIC) is proposed to automate the grasp/release of the micropart. The proposed controller controls dexterously the dynamic interaction between the microgripper and the micropart and forces the system to follow the desired dynamic relation (impedance). To perform the grasp/release task, a new smart-fingered-microgripper is designed. The microgripper is composed of an active finger with integrated force sensor and a passive finger.

The grasp/release of a micropart of size 50 µm \( \times \) 350 µm \( \times \) 2 mm is tested in experiments using the control scheme and the developed microgripper. The microgripper design and the control scheme tested show their effectiveness for the grasp/release at the microscale.


Sliding mode impedance control Microassembly Guiding task Smart microgripper Piezoelectric actuator Force sensor 



These works have been funded by the Labex ACTION project (contract “ANR-11-LABEX-0001-01”), ANR COLAMIR (contract “ANR-16-CE10-0009”) and by the French RENATECH network through its FEMTO-ST technological facility.


  1. 1.
    Dechev, N., Cleghorn, W., Mills, J.: Microassembly of 3-D microstructurescusing a compliant, passive microgripper. J. Microelec. Syst. 13, 176–189 (2004)CrossRefGoogle Scholar
  2. 2.
    Bargiel, S., Rabenorosoa, K., Clévy, C., Gorecki, C., Lutz, P.: Towards micro-assembly of hybrid moems components on a reconfigurable silicon free-space micro-optical bench. J. Micromech. Microeng. 20, 045012 (2010)CrossRefGoogle Scholar
  3. 3.
    Clévy, C., Rakotondrabe, M.: Microscale specificities. In: Clévy, C., Rakotondrabe, M., Chaillet, N. (eds.) Signal Measurement and Estimation Techniques for Micro and Nanotechnology. Springer, New York (2011). Scholar
  4. 4.
    de Lit, P., Agnus, J., Clévy, C., Chaillet, N.: A four-degree-of freedom microprehensile microrobot on chip. Assembly Autom. 24(1), 33–42 (2004)CrossRefGoogle Scholar
  5. 5.
    Beyeler, F., Neild, A., Oberti, S., Bell, Y.S.D.J., Dual, J., Nelson, B.: Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J. Microelectromech. Syst. 16(1), 7–15 (2007)CrossRefGoogle Scholar
  6. 6.
    Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic mems microgripper with two-axis force feedback. J. Micromech. Microeng. 18(5), 055013 (2008)CrossRefGoogle Scholar
  7. 7.
    Piriyanont, B., Fowler, A., Moheimani, S.: Force-controlled mems rotary microgripper. J. of Microelectromech. Syst. 24(4), 1164–1172 (2015)CrossRefGoogle Scholar
  8. 8.
    Duc, T., Lau, G., Creemer, J., Sarro, P.: Electrothermal microgripper with large jaw displacement and integrated force sensors. J. Microelectromech. Syst. 17(6), 1546–1555 (2008)CrossRefGoogle Scholar
  9. 9.
    Rakotondrabe, M., Ivan, A.: Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans. Autom. Sci. Eng. 8(4), 824–834 (2011)CrossRefGoogle Scholar
  10. 10.
    Wang, D., Yang, Q., Dong, H.: A monolithic compliant piezoelectric-driven microgripper: Design, modeling, and testing. IEEE/ASME Trans. Mechatron. 18(1), 138–147 (2013)CrossRefGoogle Scholar
  11. 11.
    Komati, B., Rabenorosoa, K., Clévy, C., Lutz, P.: Automated guiding task of a flexible micropart using a two-sensing-finger microgripper. IEEE Trans. Autom., Sci. Eng. 10(3), 515–524 (2013)Google Scholar
  12. 12.
    Hogan, N.: Impedance control - an approach to manipulation i –theory, ii – implementation, iii – applications. ASME Trans. J. Dyn. Syst. Measur. Control 107(1), 24 (1985)zbMATHGoogle Scholar
  13. 13.
    Komati, B., Pac, M., Ranatunga, I., Clévy, C., Popa, D., Lutz, P.: Explicit force control v.s. impedance control for micromanipulation. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC), vol. 1, Portland (2013)Google Scholar
  14. 14.
    Xie, Y., Sun, D., Tse, H.Y.G., Liu, C., Cheng, S.H.: Force sensing and manipulation strategy in robot-assisted microinjection on zebrafish embryos. IEEE/ASME Trans. Mechatron. 16(6), 1002–1010 (2011)CrossRefGoogle Scholar
  15. 15.
    Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Rob. Res. 16(1), 97–117 (1997)CrossRefGoogle Scholar
  16. 16.
    Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lu, Z., Goldenberg, A.: Robust impedance control and force regulation: theory and experiments. Int. J. Rob. Res. 14(3), 225–254 (1995)CrossRefGoogle Scholar
  18. 18.
    Xu, Q.: Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly. IEEE Trans. Autom. Sci. Eng. 10(3), 503–514 (2013)CrossRefGoogle Scholar
  19. 19.
    Komati, B., Agnus, J., Clévy, C., Lutz, P.: Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications. J. Micromech. Microeng. 24(3), 035018 (2014)CrossRefGoogle Scholar
  20. 20.
    Komati, B., Clévy, C., Rakotondrabe, M., Lutz, P. : Dynamic force/position modeling of a one-dof smart piezoelectric micro-finger with sensorized end-effector. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besançon, pp. 1474–1479 (2014)Google Scholar
  21. 21.
    Ballas, R.: Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration. Springer, Heidelberg (2007). Scholar
  22. 22.
    Low, T., Guo, W.: Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J. Microelectromech. Syst. 4(4), 230237 (1995)CrossRefGoogle Scholar
  23. 23.
    Rakotondrabe, M., Haddab, Y., Lutz, P.: Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Trans. Control Syst. Technol. 17, 528–539 (2009)CrossRefGoogle Scholar
  24. 24.
    Komati, B., Clévy, C., Lutz, P.: Force tracking impedance control with unknown environment at the microscale. In: IEEE ICRA International Conference on Robotics and Automation, Hong Kong (2014)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRSBesançonFrance

Personalised recommendations