Skip to main content

Texture Classification Using Deep Convolutional Neural Network with Ensemble Learning

  • 917 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11308)

Abstract

This paper approaches the problem of texture classification from very challenging dataset, the describable texture dataset (DTD), using a combination of popular pre-trained convolutional neural networks architectures to improve the overall accuracy of the system. Different architectures include mixture of VGG, Resnet50, Inception, Xception models with different number of layers and parameters which are individually tweaked to attain maximum accuracy. The results obtained from these models are combined using different technique to obtain the best results. In order to better generalize our model we even tested for other well known datasets such as KTH-TIP-2b, FMD and CUReT. Using the ensemble techniques we were able to achieve comparable accuracy wrt to state of the art techniques.

Keywords

  • Texture classification
  • Describable Texture Dataset (DTD)
  • CNN

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05918-7_31
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-05918-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Andrearczyk, V., Whelan, P.F.: Using filter banks in convolutional neural networks for texture classification. Pattern Recogn. Lett. 84, 63–69 (2016)

    CrossRef  Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  3. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1597–1604. IEEE (2005)

    Google Scholar 

  4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint, 1610–02357 (2017)

    Google Scholar 

  5. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3606–3613. IEEE (2014)

    Google Scholar 

  6. Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3828–3836. IEEE (2015)

    Google Scholar 

  7. Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)

    CrossRef  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, Bari, Italy, pp. 148–156 (1996)

    Google Scholar 

  10. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 262–270 (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  14. Mao, J., Zhu, J., Yuille, A.L.: An active patch model for real world texture and appearance classification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 140–155. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_10

    CrossRef  Google Scholar 

  15. Sharan, L., Liu, C., Rosenholtz, R., Adelson, E.H.: Recognizing materials using perceptually inspired features. Int. J. Comput. Vis. 103(3), 348–371 (2013)

    MathSciNet  CrossRef  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Song, Y., Cai, W., Li, Q., Zhang, F., Dagan Feng, D., Huang, H.: Fusing subcategory probabilities for texture classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4409–4417 (2015)

    Google Scholar 

  18. Timofte, R., Van Gool, L.J.: A training-free classification framework for textures, writers, and materials. BMVC 13, 14 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishan Gupta or Tushar Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gupta, K., Jain, T., Sengupta, D. (2018). Texture Classification Using Deep Convolutional Neural Network with Ensemble Learning. In: Groza, A., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2018. Lecture Notes in Computer Science(), vol 11308. Springer, Cham. https://doi.org/10.1007/978-3-030-05918-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05918-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05917-0

  • Online ISBN: 978-3-030-05918-7

  • eBook Packages: Computer ScienceComputer Science (R0)