Skip to main content

Part of the book series: Geoheritage, Geoparks and Geotourism ((GGAG))

Abstract

Oceanic islands have a series of characteristics that make them unique for understanding biological evolutionary processes. One of the main characteristics of oceanic islands is that the distance between the mainland and the islands acts as an important biological filter. In the case of archipelagoes, the distance between islands is also an important factor that generates the conditions for the generation of speciation process in the case of many organisms. Many species of plants and animals are not able to survive the long-distance travel and of those organisms that are able to arrive, few succeed in becoming established on islands. This is a characteristic that explains the existence of certain biological processes that are typical of oceanic islands, including the founder effect, genetic drift, disharmonic biota, adaptive radiation, dwarfism and gigantism, ecological release, high endemism and rapid island evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbogast BS, Drovetski SV, Curry RL, Boag PT, Seutin G, Grant PR, Grant BR, Anderson DJ (2006) The origin and diversification of Galapagos mockingbird. Evolution 60(2):370

    Article  Google Scholar 

  • Axelrod DI (1972) Ocean floor spreading in relation to ecosystematic problems. In: Allen RR, James FC (eds) Symposium on ecosystematics. University of Arkansas Press, Fayetteville, AR, pp 15–76

    Google Scholar 

  • Barthlott W, Porembski S (1994) Die Kakteen der Galápagos-Inseln. In: Zizka G & Klemmer K (Hrsg) Pflanzen- und Tierwelt der GalápagosInseln.—Kleine Senckenbergreihe 20, Palmengarten Sonderheft 22: 76–80

    Google Scholar 

  • Beheregaray LB et al (2004) Giant tortoises are not so slow: rapid diversification and biogeographic consensus in the Galapagos. Proc National Acad Sci 101:17. https://doi.org/10.1073/pnas.0400393101

    Article  Google Scholar 

  • Benavides E, Baum R, Snell HM, Snell HL, Sites W (2009) Island biogeography of Galapagos lava lizards (Tropiduridae: Microlophus): species diversity and colonization of the Archipelago the society for the study of evolution. Evolution 63–6:1606–1626

    Article  Google Scholar 

  • Breure ASH (1979) Systematics, phylogeny and zoogeography of Bulimulinae (Mollusca). Zoologische Verhandelingen, Leiden, Germany

    Google Scholar 

  • Bustamante RH, Wellington GM, Branch GM, Edgar GJ, Martinez P, Rivera F, Smith F, Witman J (2002) Outstanding Marine Features. In: Bensted-Smith R (ed) A biodiversity vision for the Galapagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, pp 60–71

    Google Scholar 

  • Caccone A, Gibbs JP, Ketmaier V, Suatoni E, Powell JR (1999) Origin and evolutionary relationships of giant Galapagos tortoises. Proc Natl Acad Sci USA 96:13223–13228. https://doi.org/10.1073/pnas.96.23.13223

    Article  Google Scholar 

  • Caccone A, Gentile G, Gibbs JP, Fritts TH, Snell HL, Betts J, Powell JR (2002) Phylogeography and history of giant Galapagos tortoises. Evolution 56:2052–2066. https://doi.org/10.1111/j.0014-3820.2002.tb00131.x

    Article  Google Scholar 

  • Caccone A, Gentile G, Burns C, Sezzi E, Bergman W, Powell JR (2004) Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm. Galapagos tortoises. Mol. Phylogenet, Evol, p 31

    Google Scholar 

  • Campbell KJ, Donlan CJ, Cruz F, Carrion V (2004) Eradication of feral goats (Capra hircus) from Pinta Island, Galapagos, Ecuador. Oryx 38:1–6

    Article  Google Scholar 

  • Chambers SM (1991) Biogeography of Galapagos land snails. In: James MJ (ed) Galapagos marine invertebrates. Plenum, New York, pp 307–325

    Chapter  Google Scholar 

  • Cruz F, Carrion V, Campbell KJ, Lavoie C, Donlan CJ (2009) Bio-economics of large-scale eradication of feral goats from Santiago Island, Galapagos. J Wildl Manag 73(2):191–200

    Article  Google Scholar 

  • Christie DM, Duncan RA, Mc Birney AR, Richards MA, White WM, Harpp KS, Fox CG (1992) Drowned islands downstream from the Galapagos hotspot imply extended speciation times. Nature 355:246–248

    Article  Google Scholar 

  • Clark DA (1984) In: Perry R (ed) Native land mammals in key environments: Galapagos. Pergamon Press, Oxford, UK, pp 225–231

    Google Scholar 

  • Darwin CR (1845) Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. FitzRoy RN, John Murray, London, UK

    Google Scholar 

  • Dowler R, Carroll DS, Edwards CW (2000) Rediscovery of rodents (Genus Nesoryzomys) considered extinct in the Galapagos Islands. Oryx 34(2):109

    Google Scholar 

  • Finet Y (1991) The marine molluscs of the Galápagos Islands. In: James MJ (ed) Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin’s Islands. Plenum, New York

    Google Scholar 

  • Fleischer RC, McIntosh CE, Tarr CL (1998) Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K–Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol 7:533. https://doi.org/10.1046/j.1365-294x.1998.00364.x

    Article  Google Scholar 

  • Gentile G (2009) Iguanas terrestres: Descubrimento de una nueva especie. In: de Roy T (ed) Galapagos: cincuenta anos de ciencia y conservacion. Parque Nacional Galapagos, pp 114–121

    Google Scholar 

  • Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Harvey AW (1991) Biogeographic patterns of the Galápagos porcelain crab fauna. In: James MJ (ed) Galápagos marine invertebrates: taxonomy, biogeography, and evolution in Darwin’s Islands. Plenum, New York, pp 157–172

    Chapter  Google Scholar 

  • Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676

    Article  Google Scholar 

  • Hobbs R, Higgs E, Harris J (2009) Novel ecosystems implications for conservation and restoration. Trends Conserv Evol 24(11):599

    Article  Google Scholar 

  • Hobbs RJ, Higgs ES, Hall CA (eds) (2013) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  • Ingala P, Orstom I (1989) Inventario Cartográfico de los Recursos Naturales, Geomorfología, Vegetación, Hídricos, Ecológicos y Biofísicos de las Islas Galápagos, Ecuador. 1:100,000 maps. INGALA, Quito

    Google Scholar 

  • Jordan MA, Snell HL (2008) Historical fragmentation of islands and genetic drift in populations of Galapagos lava lizards (Microlophus albermarlensis complex). Mol Ecol 14:859–867. https://doi.org/10.1111/j.1365-294x.2005.02452.x

    Article  Google Scholar 

  • Juan C, Emerson BC, Oromı́ P, Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol Evol 15(3):104–109

    Article  Google Scholar 

  • Koopman KF, McCracken GF (1998) The taxonomic status of Lasiurus (Chiroptera: Vespertilionidae) in the Galapagos Islands. American Museum of Natural History

    Google Scholar 

  • Kennedy M et al (2009) The Phylogenetic position of the Galápagos cormorant. Mol Phylogenetics Evol 53(1):94. https://doi.org/10.1016/j.ympev.2009.06.002

    Article  Google Scholar 

  • Kizirian D, Trager A, Donnelly MA, Wright JW (2004) Evolution of Galapagos Island lava lizards (Iguania: Tropiduridae: Microlophus). Mol Phylogenet Evol 32:761–769. https://doi.org/10.1016/j.ympev.2004.04.004

    Article  Google Scholar 

  • Kohn AJ (1972) Conus-miliaris at Easter Island—ecological release of diet and habitat in an isolated population. Am Zool 12:712

    Google Scholar 

  • Krajick K (2005) Winning the war against island invaders. Science 310:1412. www.sciencemag.org

    Article  Google Scholar 

  • Landry B (2002) Galagete, a new genus of Autostichidae representing the first case of an extensive radiation of endemic Lepidoptera in the Galapagos Islands. Rev Suisse Zool 109:813–868

    Article  Google Scholar 

  • Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:12

    Article  Google Scholar 

  • Macarthur RH, Wilson EO (1967) The theory of Island biogeography. REV—Revised ed., JSTOR, Princeton University Press. www.jstor.org/stable/j.ctt19cc1t2

  • McMullen CK (1990) Reproductive biology of Galapagos Islands angiosperms. In: Lawesson JA, and others ed(s). Botanical research and management in Galapagos. Proceedings of a workshop on… held 11–18 April 1987 at the Charles Darwin Research Station, Santa Cruz, Galapagos, Ecuador. St. Louis, Mo., Missouri Botanical Garden (Monographs in Systematic Botany), vol 32, pp 35–45—illus., map.. En Reproductive biology. Geog Floristics (SOUTH_AMERICA: GALAPAGOS_ISLANDS)

    Google Scholar 

  • McMullen CK (1987) Breeding systems of selected Galápagos Islands angiosperms. Am J Bot 74:1694

    Article  Google Scholar 

  • McMullen CK (1989a) The Galápagos carpenter bee, just how important is it? Noticias de Galápa-gos 48:16

    Google Scholar 

  • McMullen CK (1989b) Flowering colonizers of the Galápagos Islands: drab but not dull. Plants Today 2

    Google Scholar 

  • McMullen CK (1990) Reproductive biology of Galápagos Islands angiosperms. Monographs in Systematic Botany from the Missouri Botanical Garden 32

    Google Scholar 

  • McMullen CK (1999) Flowering plants of the Galapagos. Cornell University Press

    Google Scholar 

  • Miralles A, Macleod A, Rodríguez A, Ibáñez A, Jiménez-Uzcategui G, Quezada G, Vences M, Steinfartz S (2017) Shedding light on the imps of darkness: an integrative taxonomic revision of the Galápagos Marine Iguanas (Genus Amblyrhynchus). Zool J Linn Soc 10:1–33

    Google Scholar 

  • Murcia C, Aronson J, Kattan GH, Moreno-Mateos D, Kingsley D, Simberloff D (2014) A critique of the “novel ecosystem” concept. Trends Ecol Evol 29:548–553

    Article  Google Scholar 

  • Paulay G (1994) Biodiversity on Oceanic Islands: its origin and extinction. Integr Compar Biol 34(11):134–144. https://doi.org/10.1093/icb/34.1.134

    Article  Google Scholar 

  • Parent CE, Caccone A, Petren K (2008) Colonization and diversification of Galapagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences

    Google Scholar 

  • Parent CE, Crespi BJ (2006) Sequential colonization and diversification of Galapagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution 60:2311–2328

    Google Scholar 

  • Parent C, Crespi BJ (2009) Source ecological opportunity in adaptive radiation of Galápagos endemic land snails. Am Nat 174(6):898–900

    Article  Google Scholar 

  • Páez-Rosas D, Aurioles-Gamboa D (2010) Alimentary niche partitioning in the Galapagos Sea Lion Zalophus Wollebaeki. Marine Biol 157(12):2769–2781. https://doi.org/10.1007/s00227-010-1535-0

    Article  Google Scholar 

  • Peck SB (2006) The beetles of the Galapagos Islands, Ecuador: evolution, ecology, and diversity (Insecta: Coleoptera). NRC Research Press, Ottawa, Canada

    Google Scholar 

  • Porter DM (1983) Vascular plants of the Galapagos: origins and dispersal. In: Bowman RI, Berson M, Leviton AE (eds) Patterns of evolution in Galapagos organisms. San Francisco, California, Pacific Division of AAAS, pp 33–96

    Google Scholar 

  • Poulakakis N, Mylonas M, Lymberakis P, Fassoulas C (2002) Origin and taxonomy of the fossil elephants of the island of Crete (Greece): problems and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 186(1–2):163–183. https://doi.org/10.1016/s0031-0182(02)00451-0

    Article  Google Scholar 

  • Powell JR, Caccone A (2006) A quick guide to Galapagos tortoises. Curr Biol 16:R144–R145. https://doi.org/10.1016/j.cub.2006.02.050

    Article  Google Scholar 

  • Powell JR, Caccone A (2008) CSI tortoise: unraveling the mystery of mysteries. Galapagos News 26:8–9

    Google Scholar 

  • Pritchard PCH (1996) The Galapagos tortoises: nomenclatural and survival status Lunenburg. Chelonian Res Found, MA

    Google Scholar 

  • Quiroga D, Rivas G (2016) Restoration: novel ecosystems and hybrid environments. In: Quiroga D, Sevilla A (eds) Darwin, Darwinism and conservation. Springer, NY

    Google Scholar 

  • Raia P, Meiri S (2006) The Island rule in large mammals: paleontology meets ecology. Evolution 60(8):1731–1742. https://doi.org/10.1111/j.0014-3820.2006.tb00516.x

    Article  Google Scholar 

  • Rassmann K (1997) Evolutionary age of the Galapagos iguanas predates the age of the present Galapagos Islands. Mol Phylogen Evol 7(2):158–172

    Article  Google Scholar 

  • Rentería JL, Gardener MR, Panetta FD, Atkinson R, Crawley MJ (2012) Possible impacts of the invasive plant Rubus niveus on the native vegetation of the Scalesia forest in the Galapagos Islands. PLoS ONE 7(10):e48106. https://doi.org/10.1371/journal.pone.0048106

    Article  Google Scholar 

  • Schmitz P, Cibois A, Landry B (2007) Molecular phylogeny and dating of an insular endemic moth radiation inferred from mitochondrial and nuclear genes: the genus Galagete (Lepidoptera: Austostichidae) of the Gala´pagos Islands. Mol Phylogenet Evol 45. https://doi.org/10.1016/j.ympev.2007.05.010

    Article  Google Scholar 

  • Sequeira AS, Lanteri AA, Albelo LR, Bhattacharya S, Sijapati M (2008) Colonization history, ecological shifts and diversification in the evolution of endemic Galápagos weevils. Mol Ecol 17(4):1089–1107

    Article  Google Scholar 

  • Snow DW, Nelson JB (1984) Evolution and adaptations of Galapagos sea-birds. Biol J Linn Soc 21(1–2):137–155. https://doi.org/10.1111/j.1095-8312.1984.tb02057.x

    Article  Google Scholar 

  • Stocklin J (2009) Darwin and the plants of the Galápagos-Islands. Bauhinia 21:33–34

    Google Scholar 

  • Sulloway FJ (1982) Darwin and his finches: the evolution of a legend. J Hist Biol 15(1):1–53. https://doi.org/10.1007/bf00132004

    Article  Google Scholar 

  • Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R, Nogales M, Herrera HW, Olesen JM (2013) Invaders of pollination networks in the Galapagos Islands: emergence of novel communities. Proc Royal Soc B: Biol Sci 280(1758):20123040. https://doi.org/10.1098/rspb.2012.3040

    Article  Google Scholar 

  • Trillmich F (1981) Mutual mother-pup recognition in Galápagos fur seals and sea lions: cues used and functional significance. Behaviour 78(1/2):21–42

    Article  Google Scholar 

  • Trueman M, d’Ozouville N (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change by: Galapagos Research 67:26–37

    Google Scholar 

  • Tye A, Ortega JF (2011) Origins and evolution of Galapagos endemic vascular plants. The biology of Island floras. Cambridge University Press, Cambridge

    Google Scholar 

  • Valle C (1986) Status of the Galápagos penguin and flightless cormorant. Noticias Galápagos 43:16–17

    Google Scholar 

  • Valle CA (1993) The evolution of mate desertion in flightless cormorants. In: Merlen-Davis G (ed) Charles Darwin Research Station Annual Report 1988–1989. Charles Darwin Foundation, Santa Cruz, Galapagos, Ecuador, pp 97–99

    Google Scholar 

  • Valle CA (1994) The ecology and evolution of sequential polyandry in Galápagos cormorants (Compsohalieus [Nannopterum] harrisi). Ph.D. Dissertation, Princeton University, Princeton, USA

    Google Scholar 

  • Valle CA, Coulter MC (1987) Present status of the flightless cormorant, Galápagos penguin and greater flamingo populations in the Galápagos Islands, Ecuador, after the 1982–1983 El Niño. Condor 89:276–281

    Article  Google Scholar 

  • Van Den Bergh GD, Rokhus DA, Morwood MJ, Sutikna T, Jatmiko, Saptomo EW (2008) The youngest Stegodon remains in Southeast Asia from the Late Pleistocene archaeological site Liang Bua, Flores, Indonesia. Q Int 182(1): 16–48. https://doi.org/10.1016/j.quaint.2007.02.001. Retrieved 27 Nov 2011

    Article  Google Scholar 

  • Vargas P, Heleno R, Traveset A, Nogales M (2012) Colonization of the Galapagos Islands by plants with no specific syndromes for long-distance dispersal: a new perspective. Ecography 35(33–43):2012

    Google Scholar 

  • Villegas-Amtmann S, Costa DP, Tremblay Y, Salazar S, Aurioles-Gamboa D (2008) Multiple foraging strategies in a marine apex predator, the Galapagos sea lion Zalophus wollebaeki. Mar Ecol Prog Ser 363:299–309

    Article  Google Scholar 

  • Walters SM, Stow EA (2002) Darwin’s mentor. Cambridge University Press. ISBN 0-521-59146-5

    Google Scholar 

  • Wagner WL, Funk VA (eds) (1995) Hawaiian bio- geography: evolution on a hot spot archipelago. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Walsh SJ, McCleary AL, Mena CF, Shao Y, Tuttle JP, González A, Atkinson R (2008) QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: implications for control and land use management. Remote Sens Environ 112(5):1927–1941. https://doi.org/10.1016/j.rse.2007.06.028

    Article  Google Scholar 

  • Weston EM, Lister AM (2009) Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis. Nature 459(7243):85

    Article  Google Scholar 

  • Whittaker R, Fernandez P (2007) Island biogeography, ecology, evolution and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Wiggins IL, Porter DM (2018) Flora of the Galapagos Islands. Stanford University Press, 1971, p 1020. www.sup.org/books/title/?id=3. Accessed 8 Apr 2018

  • Wikelski M, Corinna T (2000) Marine iguanas shrink to survive El Niño. Nature 403

    Google Scholar 

  • Wolf M et al (2007) The evolution of animal personalities. Animal Personalities 8 Nov. 2007, pp 252–275. https://doi.org/10.7208/chicago/9780226922065.003.0010

  • Wright JW (1983) The evolution and biogeography of the lizards of the Galapagos Archipelago: evolutionary genetics of Phyllodactylus and Tropidurus populations. In: Bowman RI, Berson M, Leviton AE (eds) Patterns of evolution in Galápagos organisms. Pacific Division of the American Association for the Advancement of Science, San Francisco, CA, pp 123–155

    Google Scholar 

  • Wyles JS, Sarich VM (1983) Are the Galápagos iguanas older than the Gal´apagos. In: Bowman RI, Berson M, Levinton AE (eds) Patterns of evolution in Galapagos organisms. American Association for the Advancement of Science, Pacific Division, San Francisco, CA, pp 177–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kelley .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kelley, D., Page, K., Quiroga, D., Salazar, R. (2019). The Origins and Ecology of the Galapagos Islands. In: In the Footsteps of Darwin: Geoheritage, Geotourism and Conservation in the Galapagos Islands. Geoheritage, Geoparks and Geotourism. Springer, Cham. https://doi.org/10.1007/978-3-030-05915-6_3

Download citation

Publish with us

Policies and ethics