Abstract
The accurate understanding of occlusion region is critical for trustworthy estimation of optical flow to prevent the negative influence of occluded pixels on disocclusion regions. However, occlusion is the result of motion. In contrast, estimating accurate optical flow is necessary to locate reliable occlusions. Hence, one of the key challenges that required further exploration and research is the accuracy at the boundaries of the moving objects. This paper presents the work in process approach that can detect occlusion regions by using some constraints such as pixel-wise coherence, segment-wise confidence and edge-motion coherence. Comparing to the previous methods, our method achieves the same efficiency by solving only one Partial Differential Equation (PDE) problem. The proposed method is faster and provides better coverage rates for occlusion regions than variation techniques in various numbers of benchmark datasets. With these improved results, we can apply and extend our approach to a wider range of applications in computer vision, such as: motion estimation, object detection and tracking, robot navigation, 3D reconstruction, image registration.
Keywords
- Optical flow
- Unstable region
- Object boundaries
- Occlusion detection
- Video object extraction
- Video object segmentation
This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number C2016-28-11/HD-KHCN.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Perez-Rua, J.-M., Crivelli, T., Bouthemy, P., Perez, P.: Determining occlusions from space and time image reconstructions. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1382–1391. IEEE (2016)
Alvarez, L., Deriche, R., Papadopoulo, T., Sánchez, J.: Symmetrical dense optical flow estimation with occlusions detection. Int. J. Comput. Vis. 75, 371–385 (2007)
Strecha, C., Fransens, R., Van Gool, L.: A probabilistic approach to large displacement optical flow and occlusion detection. In: Comaniciu, D., Mester, R., Kanatani, K., Suter, D. (eds.) SMVP 2004. LNCS, vol. 3247, pp. 71–82. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30212-4_7
Proesmans, M., Van Gool, L., Pauwels, E., Oosterlinck, A.: Determination of optical flow and its discontinuities using non-linear diffusion. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 294–304. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0028362
Xiao, J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral filtering-based optical flow estimation with occlusion detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 211–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_17
Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flow. Int. J. Comput. Vis. 97, 322–338 (2012)
Sadek, R., Ballester, C., Garrido, L., Meinhardt, E., Caselles, V.: Frame interpolation with occlusion detection using a time coherent segmentation. In: Proceedings of the International Conference on Computer Vision Theory and Applications, pp. 367–372. SciTePress - Science and and Technology Publications (2012)
Ballester, C., Garrido, L., Lazcano, V., Caselles, V.: A TV-L1 optical flow method with occlusion detection. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 31–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_4
Tao, M., Bai, J., Kohli, P., Paris, S.: SimpleFlow: a non-iterative, sublinear optical flow algorithm. Comput. Graph. Forum. 31, 345–353 (2012)
Lim, K.P., Das, A., Chong, M.N.: Estimation of occlusion and dense motion fields in a bidirectional Bayesian framework. IEEE Trans. Pattern Anal. Mach. Intell. 24, 712–718 (2002)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp. 508–515. IEEE Computer Society (2001)
Sun, J., Li, Y., Kang, S.B., Shum, H.-Y.: Symmetric stereo matching for occlusion handling. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), pp. 399–406. IEEE (2005)
Ince, S., Konrad, J.: Occlusion-aware optical flow estimation. IEEE Trans. Image Process. 17, 1443–51 (2008)
Ben-Ari, R., Sochen, N.: Variational stereo vision with sharp discontinuities and occlusion handling. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–7. IEEE (2007)
Xu, L., Chen, J., Jia, J.: A segmentation based variational model for accurate optical flow estimation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 671–684. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_51
Stein, A.N., Hebert, M.: Occlusion boundaries from motion: low-level detection and mid-level reasoning. Int. J. Comput. Vis. 82, 325–357 (2009)
He, X., Yuille, A.: Occlusion boundary detection using pseudo-depth. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 539–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_39
Gao, T., Packer, B., Koller, D.: A segmentation-aware object detection model with occlusion handling. In: CVPR 2011, pp. 1361–1368. IEEE (2011)
Humayun, A., Mac Aodha, O., Brostow, G.J.: Learning to find occlusion regions. In: CVPR 2011, pp. 2161–2168. IEEE (2011)
Sundberg, P., Brox, T., Maire, M., Arbelaez, P., Malik, J.: Occlusion boundary detection and figure/ground assignment from optical flow. In: CVPR 2011, pp. 2233–2240. IEEE, Washington, DC, USA (2011)
Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR 1994, pp. 593–600. IEEE Computer Society Press (1994)
Estellers, V., Soatto, S.: Detecting occlusions as an inverse problem. J. Math. Imaging Vis. 54, 181–198 (2016)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45, 427–437 (2009)
Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006)
Powers, D.M.W.: Evaluation: from precision, recall and F-measure To Roc, informedness, markedness & correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)
Pont-Tuset, J.: Image segmentation evaluation and its application to object detection, Universitat Politècnica de Catalunya, UPC BarcelonaTech (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Vu, TA., Phan, H.N., Huynh, T.K., Ha, S.VU. (2019). An Improved Occlusion Detection with Constraints Approach for Video Processing. In: Duong, T., Vo, NS. (eds) Industrial Networks and Intelligent Systems. INISCOM 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-05873-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-05873-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05872-2
Online ISBN: 978-3-030-05873-9
eBook Packages: Computer ScienceComputer Science (R0)