Skip to main content

Production of High-Resistivity Electrical Steel Alloys by Substitution of Si with Al and Cr

  • Conference paper
  • First Online:
TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings

Abstract

Fe-3Si-3Al and Fe-4Si-4Cr (wt%) experimental alloys were processed to assess the electrical resistivity and workability effects of substituting Al and Cr for Si in high-Si electrical steel alloys. The experimental alloys were made by arc melting , and processed by hot rolling and cold rolling to produce strips. Samples were characterized by means of metallography, hardness , workability and resistivity . Results showed that the two alloys could be rolled down to 200 µm thickness (90% hot-rolled reduction and 80% cold rolled reduction) without crack formation in the strips. Hardness in the annealed condition and electrical resistivity were 228 HV/74 µΩ cm and 243 HV/85 µΩ cm, respectively, for the Fe-3Si-3Al and for Fe-4Si-4Cr alloys. The resistivity measured for Fe-4Si-4Cr was higher than the resistivity reported for the benchmark high-Si alloy, Fe-6.5Si. Both experimental alloys showed improvement on the workability compared to Fe-6.5Si since there was no edge cracking on the cold-rolled strips up to 80% reduction, and the hardness was approximately 35% lower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moses A (1990) Electrical steels: past, present and future developments. IEE Proc A 137(5):233–245

    CAS  Google Scholar 

  2. Beckley P (2002) Electrical steels for rotating machines, no. 37. IET

    Google Scholar 

  3. Liu HT, Li HZ, Li HL, Gao F, Liu GH, Luo ZH, Zhang FQ, Chen SL, Cao GM, Liu ZY, Wang GD (2015) Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 Wt% Si non-oriented electrical steel. J Magn Magn Mater 391.C:65–74

    Article  CAS  Google Scholar 

  4. Yu JH, Shin JS, Bae JS, Lee Z-H, Lee TD, Lee HM, Lavernia EJ (2001) The effect of heat treatments and Si contents on B2 ordering reaction in high-silicon steels. Mater Sci Eng A 307(1):29–34

    Article  Google Scholar 

  5. Takada Y, Abe M, Masuda S, Inagaki J (1988) Commercial scale production of Fe-6.5 Wt. % Si sheet and its magnetic properties. J Appl Phys 64(10):5367–5369

    Article  CAS  Google Scholar 

  6. He XD, Li X, Sun Y (2008) Microstructure and magnetic properties of high silicon electrical steel produced by electron beam physical vapor deposition. J Magn Magn Mater 320(3–4):217–221

    Article  CAS  Google Scholar 

  7. Schoen JW, Williams RS, Huppi GS (2004) Method of continuously casting electrical steel strip with controlled spray cooling. U.S. Patent No. 6,739,384, 25 May 2004

    Google Scholar 

  8. Tian G, Bi X (2010) Fabrication and magnetic properties of Fe–6.5% Si alloys by magnetron sputtering method. J Alloy Compd 502(1):1–4

    Article  CAS  Google Scholar 

  9. Ros-Yanez T, Houbaert Y, Gómez Rodrı́guez V (2002) High-silicon steel produced by hot dipping and diffusion annealing. J Appl Phys 91(10):7857–7859

    Google Scholar 

  10. Mănescu V, Păltânea G, Gavrilă H (2014) Non-oriented silicon iron alloys-state of the art and challenges. Rev Roum Sci Techn-Electrotechn et Energ 59(4):371–380

    Google Scholar 

  11. Littmann M (1971) Iron and silicon-iron alloys. IEEE Trans Magn 7(1):48–60

    Article  CAS  Google Scholar 

  12. Jacobs S, Van De Putte T, Saikaly W, Chassang X (2014) Metallurgical solutions for new top performance non-oriented electrical steel for cores. In: 2014 4th international electric drives production conference (EDPC). IEEE, 2014

    Google Scholar 

  13. Stodolny J, Groyecki J (1989) Cold deformability of Fe-Si-Al alloys. Phys Scr 39(2):279

    Article  CAS  Google Scholar 

  14. Properties and selection: nonferrous alloys and special-purpose materials (1990) Metals handbook, vol 2, p 713

    Google Scholar 

  15. Hong J, Choi H, Lee S, Kim JK, Mo Koo Y (2017) Effect of Al content on magnetic properties of Fe-Al Non-oriented electrical steel. J Magn Magn Mater 439:343–348

    Article  CAS  Google Scholar 

  16. Ghosh G (2008) Aluminium–iron–silicon. Iron systems, part 1. Springer, Berlin, Heidelberg, pp 184–266

    Chapter  Google Scholar 

  17. Raghavan V (2004) Cr-Fe-Si (Chromium-Iron-Silicon). J Phase Equilibria Diffus 25(6):545–546

    Article  CAS  Google Scholar 

  18. Ros T, Houbaert Y, Fischer O, Schneider J (2001) Thermomechanical processing of high Si-steel (up to 6.3% Si). IEEE Trans Magn 37(4):2321–2324

    Article  CAS  Google Scholar 

  19. Fang XS, Liang YF, Ye F, Lin JP (2012) Cold rolled Fe-6.5 wt.% Si alloy foils with high magnetic induction. J Appl Phys 111.9:094913

    Article  Google Scholar 

  20. Kim KN, Pan LM, Lin JP, Wang YL, Lin Z, Chen GL (2004) The effect of boron content on the processing for Fe–6.5 wt% Si electrical steel sheets. J Magn Magn Mater 277(3):331–336

    Article  CAS  Google Scholar 

  21. Narita K, Teshima N, Mori Y, Enokizono M (1981) Recent researches on high silicon-iron alloys. IEEE Trans Magn 17(6):2857–2862

    Article  Google Scholar 

  22. Shin JS, Bae JS, Kim HJ, Lee H, Lee TD, Lavernia EJ, Lee ZH (2005) Ordering–disordering phenomena and micro-hardness characteristics of B2 phase in Fe–(5–6.5%) Si alloys. Mater Sci Eng A 407(1–2):282–290

    Article  Google Scholar 

  23. Dodd B, Boddington P (1980) The causes of edge cracking in cold rolling. J Mech Work Technol 3(3–4):239–252

    Article  CAS  Google Scholar 

  24. Hawezy D (2017) The influence of silicon content on physical properties of non-oriented silicon steel. Mater Sci Technol 33(14):1560–1569

    Article  CAS  Google Scholar 

  25. Konadu SN (2006) Non-destructive testing and surface evaluation of electrical steels. Cardiff University

    Google Scholar 

  26. Perrier JC, Brissonneau P (1982) Some physical and mechanical properties of SiAlFe alloys. J Magn Magn Mater 26(1–3):79–82

    Article  CAS  Google Scholar 

  27. Schoen JW, Comstock RJ Jr (2008) Method for production of non-oriented electrical steel strip. U.S. Patent No. 7,377,986, 27 May 2008

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the US DOE under grant no. DE-EE0007866.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brhayan Stiven Puentes Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puentes Rodriguez, B.S., Brice, D., Mann, J.B., Chandrasekar, S., Trumble, K. (2019). Production of High-Resistivity Electrical Steel Alloys by Substitution of Si with Al and Cr. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05861-6_57

Download citation

Publish with us

Policies and ethics