Skip to main content

Phase-Field Modeling of Microstructure Evolution of Binary and Multicomponent Alloys During Selective Laser Melting (SLM) Process

  • 4358 Accesses

Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In selective laser melting (SLM), temperature gradients and cooling rates are extremely large in comparison to the ordinary directional solidification process. Therefore, the standard analytical methods are not able to predict the dependency of the dendrite arm spacing on the process parameters correctly. In the current research, we use a quantitative multicomponent phase-field model to investigate the arm spacing during the SLM process taking into account the dependency of the tip undercooling on the solidification velocity. It is found that the precision of the phase-field method can be estimated by a stability parameter which is defined as a ratio of the numerical resolution to the solidification velocity and should be chosen larger than a critical value. We show that our developed results are in good agreement with the theoretically obtained ones based on Kurz–Fisher method. We investigate the microstructure evolution and component distribution in Fe–Mn–Al–C solidified alloy during SLM process. The arm spacing and the Mn distribution are in a very good agreement with the experimental results. Additionally, the resulting non-standard dependencies of the arm spacing on the process parameters are compared with analytical calculations, which show excellent agreement between predictions and experimental measurements.

Keywords

  • Selective laser melting
  • Phase-field modeling
  • Dendrite arm spacing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05861-6_27
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-05861-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hasse Ch, Bültmann J, Hof J, Ziegler S, Bremen S, Hinke Ch, Schwedt A, Prahl U, Bleck W (2017) Materials 10:56

    CrossRef  Google Scholar 

  2. Echebarria B, Folch R, Karma A, Plapp M (2004) \(C^A\) is the concentartion of A component. Phys Rev E 70:061604

    Google Scholar 

  3. Takaki T, Sakane S, Ohno M, Shibuta Y, Shimokawabe T, Aoki T (2016) Acta Mater 118:230–243

    CrossRef  CAS  Google Scholar 

  4. Takaki T, Ohno M, Shibuta Y, Sakane S, Shimokawabe T, Aoki T (2016) J Cryst Growth 442(15):14–24

    CrossRef  Google Scholar 

  5. Tourret D, Karma A (2015) Acta Mater 82:64–83

    CrossRef  CAS  Google Scholar 

  6. Gurevich S, Karma A, Plapp M, Trivedi R (2010) Phys Rev E 81:021608

    CrossRef  Google Scholar 

  7. Echebarria B, Karma A, Gurevich S (2010) Phys Rev E 81:021608

    CrossRef  Google Scholar 

  8. Diepers HJ, Ma D, Steinbach I (2002) J Cryst Growth 237–239:149–153

    CrossRef  Google Scholar 

  9. Viardin A, Zaloznik M, Souhar Y, Apel M, Combeau H (2017) Acta Mater 122:386–399

    CrossRef  CAS  Google Scholar 

  10. Wei M, Tang J, Zhang L, Sun W, Du Y (2015) Metal Mate Trans A 46(7):3182–3191

    CrossRef  CAS  Google Scholar 

  11. Eiken J, Böttger B, Steinbach I (2006) Phys Rev E 73(6):066122

    CrossRef  CAS  Google Scholar 

  12. Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner U, Lass E, Heigel J, Idell Y (2017) Acta Mater 139:244–253

    CrossRef  CAS  Google Scholar 

  13. Yang C, Xu Q, Liu B (2018) J Mater Sci 53:9755–70

    CrossRef  CAS  Google Scholar 

  14. Ghosh S, Ma L, Ofori-Opoku N, Guyer JE (2017) Model Sim Mater Sci Eng 25(6):065002

    Google Scholar 

  15. Kurz W, Trivedi R (1994) Mater Sci Eng A 179:46–51

    CrossRef  Google Scholar 

  16. Kundin J, Siquieri R, Emmerich H (2013) Physica D 243:116–127

    CrossRef  CAS  Google Scholar 

  17. Kundin J, Rezende JL, Emmerich H (2014) Metal Mater Trans A 45(2):1068

    CrossRef  CAS  Google Scholar 

  18. Kundin J, Mushongera L, Emmerich H (2015) Acta Mater 95:343–356

    CrossRef  CAS  Google Scholar 

  19. Karma A, Rappel WJ (1998) Phys Rev E 57:4323–4349

    CrossRef  CAS  Google Scholar 

  20. Bouse GK, Mihalisin JR (1989) Metallurgy of investment cast superalloy components. In: Tien JK, Caulfield T (eds), Superalloys supercomposites superceramics. Academic Press, pp 99–148

    Google Scholar 

Download references

Acknowledgements

JK gratefully acknowledge the financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the project KU 3122/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ramazani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ramazani, A., Kundin, J., Haase, C., Prahl, U. (2019). Phase-Field Modeling of Microstructure Evolution of Binary and Multicomponent Alloys During Selective Laser Melting (SLM) Process. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05861-6_27

Download citation