Skip to main content

Deterministic Group Tractography with Local Uncertainty Quantification

  • 1038 Accesses

Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

While tractography is routinely used to trace the white-matter connectivity in individual subjects, the population analysis of tractography output is hampered by the difficulty of comparing populations of curves. As a result, analysis is often reduced to population summaries such as TBSS, or made pointwise with similar interaction of remote and nearby tracts. As an easy-to-use alternative, we propose population-wide tractography in MNI space, by simultaneously considering diffusion data from the entire population, registered to MNI. We include voxel-wise quantification of population variability as a measure of uncertainty. The group tractography algorithm is illustrated on a population of subjects from the Human Connectome Project, obtaining robust population estimates of the white matter tracts.

Keywords

  • Tractography
  • Population analysis
  • Uncertainty quantification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://db.humanconnectome.org/.

  2. 2.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL.

References

  1. Andersson, J.L.R., Jenkinson, M., Smith, S.: Non-linear registration, aka spatial normalisation (2010)

    Google Scholar 

  2. Banerjee, A., Dhillon, I.S., Gosh, J., Sra, S.: Clustering on the unit hypersphere using von mises-fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Ertan Cetingul, H., Afsari, B., Wright, M.J., Thompson, P.M., Vidal, R.: Group action induced averaging for HARDI processing, pp. 1389–1392. IEEE (2012)

    Google Scholar 

  4. Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D., Glasser, M.F., Harel, N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z., Xu, J., Yacoub, E.: The Human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)Connectivity

    Google Scholar 

  5. Gori, P., Colliot, O., Marrakchi-Kacem, L., Worbe, Y., Routier, A., Poupon, C., Hartmann, A., Ayache, N., Durrleman, S.: Joint Morphometry of fiber tracts and gray matter structures using double diffeomorphisms. In: Information Processing in Medical Imaging: Proceedings of the ... Conference, vol. 24, 275–287 (2015)

    Google Scholar 

  6. Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L.: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. In: MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, 9(Pt 2), pp. 58–66 (2006)

    CrossRef  Google Scholar 

  7. Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.: A random riemannian metric for probabilistic shortest-path tractography. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Vol. 9349, pp. 597–604. Springer International Publishing, Cham (2015)

    Google Scholar 

  8. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)

    CrossRef  Google Scholar 

  9. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012)

    CrossRef  Google Scholar 

  10. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    CrossRef  Google Scholar 

  11. Khatami, M., Schmidt-Wilcke, T., Sundgren, P.C., Abbasloo, A., Schlkopf, B., Schultz, T.: BundleMAP: Anatomically localized classification, regression, and hypothesis testing in diffusion MRI. Pattern Recogn. 63, 593–600 (2017)

    CrossRef  Google Scholar 

  12. Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.K.: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of International Society for Magnetic Resonance in Medicine, 17, January 2009

    Google Scholar 

  13. Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies—a technical review. NMR Biomedicine 15(7–8), 468–480 (2002)

    CrossRef  Google Scholar 

  14. Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.: Probabilistic shortest path Tractography in DTI using gaussian process ODE solvers. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2014. Vol. 8675, pp. 265–272. Springer International Publishing, Cham (2014)

    CrossRef  Google Scholar 

  15. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Zaheer Cader, M., Matthews, P.M., Behrens, T.E.J.: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4), 1487–1505 (2006)

    CrossRef  Google Scholar 

  16. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Michael Brady, J., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004)

    CrossRef  Google Scholar 

  17. Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45(1), S173–S186 (2009)

    CrossRef  Google Scholar 

  18. Zhang, F., Weining, W., Ning, L., McAnulty, G., Waber, D., Gagoski, B., Sarill, K., Hamoda, H.M., Song, Y., Cai, W., Rathi, Y., O’Donnell, L.J.: Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis. NeuroImage 171, 341–354 (2018)

    CrossRef  Google Scholar 

Download references

Acknowledgements

Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

This research was supported by Center for Stochastic Geometry and Advanced Bioimaging, funded by a grant from the Villum Foundation, as well as a grant from the Lundbeck Foundation. TDH was covered by a block stipend from the Villum Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Nugaard Holm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holm, A.N., Feragen, A., Dela Haije, T., Darkner, S. (2019). Deterministic Group Tractography with Local Uncertainty Quantification. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_30

Download citation