Skip to main content

Return-to-Axis Probability Calculation from Single-Shell Acquisitions

  • Conference paper
  • First Online:
  • 1139 Accesses

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The Ensemble Average diffusion Propagator (EAP) provides relevant microstructural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like the Diffusion Tensor. The direct estimation of the EAP requires a dense sampling of the \({\mathbf {q}}\)-space data. Although alternative techniques have been proposed, all of them require a high number of gradients and several b-values to be calculated. Once the EAP is calculated scalar measures must be directly derived. In this work, we propose a method to drastically reduce the number of points needed for the estimation of one of the measures, the return-to-axis probability (RTAP), efficiently estimating the \({\mathbf {q}}\)-space diffusion measure from a single shell acquisition. The proposal avoids the calculation of the EAP assuming that the diffusion does not depend on the radial direction. By applying this assumption locally, we achieve closed-form expressions of the measure using information from only one b-value, compatible with acquisitions protocols used for HARDI. Results have shown that the measures are highly correlated with the same measures calculated with state-of-the-art EAP estimators and highly accelerated execution times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Data from the HCP database (https://ida.loni.usc.edu/login.jsp). The HCP project (Principal Investigators: B. Rosen, M.D., Ph.D., M. Center at MGH; AW. Toga, Ph.D., USC, VJ. Weeden, MD, Martinos Center at MGH) is supported by NIDCR, NIMH and NINDS. HCP is the result of efforts of co-investigators from the USC, Martinos Center MGH, WU, and the UM.

  2. 2.

    MGH 1007: 42, 52, 65; MGH 1010: 46, 54, 60; MGH 1016: 42, 55, 68; MGH 1018: 31, 41, 51; MGH 1019: 40, 50, 64.

  3. 3.

    https://github.com/LipengNing/RBF-Propagator.

  4. 4.

    http://nipy.org/dipy.

References

  1. Boscolo Galazzo, I., Brusini, L., Obertino, S., Zucchelli, M., Granziera, C., Menegaz, G.: On the viability of diffusion MRI-based microstructural biomarkers in ischemic stroke. Front. Neurosci. 12, 92 (2018)

    Article  Google Scholar 

  2. Brusini, L., Obertino, S., Zucchelli, M., Galazzo, I.B., Krueger, G., Granziera, C., Menegaz, G.: Assessment of mean apparent propagator-based indices as biomarkers of axonal remodeling after stroke. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, pp. 199–206. Springer International Publishing, Cham (2015)

    Google Scholar 

  3. Canales-Rodríguez, E.J., Melie-García, L., Iturria-Medina, Y.: Mathematical description of q-space in spherical coordinates: exact q-ball imaging. Magn. Reson. Med. 61(6), 1350–1367 (2009)

    Article  Google Scholar 

  4. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion profile estimation from high angular resolution diffusion images: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)

    Article  Google Scholar 

  5. Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C.: Diffusion propagator imaging: using Laplace’s equation and multiple shell acquisitions to reconstruct the diffusion propagator. In: International Conference on Information Processing in Medical Imaging, pp. 1–13. Springer, Heidelberg (2009)

    Google Scholar 

  6. Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage 134, 365–385 (2016)

    Article  Google Scholar 

  7. Hosseinbor, A.P., Chung, M.K., Wu, Y.C., Alexander, A.L.: Bessel Fourier orientation reconstruction (BFOR): an analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)

    Article  Google Scholar 

  8. Ning, L., Westin, C.F., Rathi, Y.: Estimating diffusion propagator and its moments using directional radial basis functions. IEEE Trans. Med. Imag. 34(10), 2058–2078 (2015)

    Article  Google Scholar 

  9. Özarslan, E., Koay, C., Basser, P.: Simple harmonic oscillator based estimation and reconstruction for one-dimensional q-space MR. Proc. Int. Soc. Mag. Reson. Med. 16, 35 (2008)

    MATH  Google Scholar 

  10. Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)

    Article  Google Scholar 

  11. Özarslan, E., Sepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31, 1086–1103 (2006)

    Article  Google Scholar 

  12. Tristan-Vega, A., Aja-Fernández, S., Westin, C.F.: Deblurring of probabilistic ODFs in quantitative diffusion MRI. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 932–935. IEEE (2012)

    Google Scholar 

  13. Tristán-Vega, A., Westin, C.F., Aja-Fernández, S.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage 47(2), 638–650 (2009)

    Article  Google Scholar 

  14. Tristan-Vega, A., Westin, C.F., Aja-Fernandez, S.: A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk-Radon transform. Neuroimage 49(2), 1301–1315 (2010)

    Article  Google Scholar 

  15. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003)

    Article  Google Scholar 

  16. Wu, Y.C., Field, A.S., Alexander, A.L.: Computation of diffusion function measures in q-space using magnetic resonance hybrid diffusion imaging. IEEE Trans. Med. Imag. 27(6), 858–865 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Aja-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aja-Fernández, S., Tristán-Vega, A., Molendowska, M., Pieciak, T., de Luis-García, R. (2019). Return-to-Axis Probability Calculation from Single-Shell Acquisitions. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_3

Download citation

Publish with us

Policies and ethics