Skip to main content

A Framework for Calculating Time-Efficient Diffusion MRI Protocols for Anisotropic IVIM and An Application in the Placenta

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Abstract

We develop a framework for calculating clinically-viable diffusion MRI (dMRI) protocols for anisotropic IVIM modelling. The proposed multi-stage framework combines previous approaches to dMRI protocol optimisation: first optimising b-values by minimizing Cramer-Rao lower bounds on parameter variances, and subsequently optimising gradient directions jointly to provide maximum angular coverage across all shells. This removes unnecessary measurements of closely spaced b-values with the same gradient directions, which encode very similar information, and hence reduces the total number of dMRI measurements. We applied the framework to establish an organ-specific, data-driven, set of optimised b-values and gradient directions for dMRI of the placenta. The optimised protocol leads to higher contrast-to-noise ratios in parameter maps compared to a naive protocol of comparable scan time. Applying this framework in other organs has the potential to reduce scanning times required for anisotropic IVIM modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah, O.M., Gomez, A.D., Merchant, S., Heidinger, M., Poelzing, S., Hsu, E.W.: Orientation dependence of microcirculation-induced diffusion signal in anisotropic tissues. Magn. Reson. Med., Oct 2015. n/a–n/a. https://doi.org/10.1002/mrm.25980

    Article  Google Scholar 

  2. Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60(2), 439–448 (2008). https://doi.org/10.1002/mrm.21646

    Article  Google Scholar 

  3. Bonel, H.M., Stolz, B., Diedrichsen, L., Frei, K., Saar, B., Tutschek, B., Raio, L., Surbek, D., Srivastav, S., Nelle, M., Slotboom, J., Wiest, R.: Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency. Radiology 257(3), 810–819 (2010). https://doi.org/10.1148/radiol.10092283

    Article  Google Scholar 

  4. Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med./Soc. Magn. Reson. Med. 69(6), 1534–1540 (2013). https://doi.org/10.1002/mrm.24736

    Article  Google Scholar 

  5. Derwig, I., Barker, G.J., Poon, L., Zelaya, F., Gowland, P., Lythgoe, D.J., Nicolaides, K.: Association of placental T2 relaxation times and uterine artery Doppler ultrasound measures of placental blood flow. Placenta 34(6), 474–479 (2013). https://doi.org/10.1016/j.placenta.2013.03.005

    Article  Google Scholar 

  6. Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., Schoenberg, S.O.: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging 26(2), 375–385 (2007). https://doi.org/10.1002/jmri.20969

    Article  Google Scholar 

  7. Finkenstaedt, T., Klarhoefer, M., Eberhardt, C., Becker, A.S., Andreisek, G., Boss, A., Rossi, C.: The IVIM signal in the healthy cerebral gray matter: a play of spherical and non-spherical components. NeuroImage 152, 340–347 (2017). https://doi.org/10.1016/j.neuroimage.2017.03.004

    Article  Google Scholar 

  8. Grussu, F., Schneider, T., Zhang, H., Alexander, D.C., Wheeler-Kingshott, C.A.: Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. NeuroImage 111, 590–601 (2015). https://doi.org/10.1016/j.neuroimage.2015.01.045

    Article  Google Scholar 

  9. Hilbert, F., Bock, M., Neubauer, H., Veldhoen, S., Wech, T., Bley, T.A., Köstler, H.: An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. NMR Biomed. 29(10), 1403–1413 (2016). https://doi.org/10.1002/nbm.3584

    Article  Google Scholar 

  10. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999). https://doi.org/10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q

    Article  Google Scholar 

  11. Karampinos, D.C., King, K.F., Sutton, B.P., Georgiadis, J.G.: Intravoxel partially coherent motion technique: characterization of the anisotropy of skeletal muscle microvasculature. J. Magn. Reson. Imaging 31(4), 942–953 (2010). https://doi.org/10.1002/jmri.22100

    Article  Google Scholar 

  12. Le Bihan, D., Breton, E., Lallemand, D., Aubin, M.L.L., Vignaud, J., Laval-Jeantet, M.: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2), 497–505 (1988). https://doi.org/10.1148/radiology.168.2.3393671

    Article  Google Scholar 

  13. Liu, A.L., Mikheev, A., Rusinek, H., Huang, W.C., Wysock, J.S., Babb, J.S., Feiweier, T., Stoffel, D., Chandarana, H., Sigmund, E.E.: REnal flow and microstructure AnisotroPy (REFMAP) MRI in normal and peritumoral renal tissue. J. Magn. Reson. Imaging, 1–10 (2018). https://doi.org/10.1002/jmri.25940

    Article  Google Scholar 

  14. Moore, R., Strachan, B., Tyler, D., Duncan, K., Baker, P., Worthington, B., Johnson, I., Gowland, P.: In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. Placenta 21(7), 726–732 (2000). https://doi.org/10.1053/plac.2000.0567

    Article  Google Scholar 

  15. Notohamiprodjo, M., Chandarana, H., Mikheev, A., Rusinek, H., Grinstead, J., Feiweier, T., Raya, J.G., Lee, V.S., Sigmund, E.E.: Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn. Reson. Med. 73(4), 1526–1532 (2015). https://doi.org/10.1002/mrm.25245

    Article  Google Scholar 

  16. Panagiotaki, E., Walker-Samuel, S., Siow, B., Johnson, S.P., Rajkumar, V., Pedley, R.B., Lythgoe, M.F., Alexander, D.C.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74(7), 1902–1912 (2014). https://doi.org/10.1158/0008-5472.CAN-13-2511

    Article  Google Scholar 

  17. Slator, P.J., Hutter, J., McCabe, L., Gomes, A.D.S., Price, A.N., Panagiotaki, E., Rutherford, M.A., Hajnal, J.V., Alexander, D.C.: Placenta microstructure and microcirculation imaging with diffusion MRI. Magn. Reson. Med., Dec 2017. https://doi.org/10.1002/mrm.27036

    Article  Google Scholar 

  18. Sohlberg, S., Mulic-Lutvica, A., Lindgren, P., Ortiz-Nieto, F., Wikström, A.K., Wikström, J.: Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta 35(3), 202–206 (2014). https://doi.org/10.1016/j.placenta.2014.01.008

    Article  Google Scholar 

  19. Sohlberg, S., Mulic-Lutvica, A., Olovsson, M., Weis, J., Axelsson, O., Wikström, J., Wikström, A.K.: Magnetic resonance imaging-estimated placental perfusion in fetal growth assessment. Ultrasound Obstet. Gynecol. 46(6), 700–705 (2015). https://doi.org/10.1002/uog.14786

    Article  Google Scholar 

  20. Song, F., Wu, W., Qian, Z., Zhang, G., Cheng, Y.: Assessment of the placenta in intrauterine growth restriction by diffusion-weighted imaging and proton magnetic resonance spectroscopy. Reprod. Sci. 24(4), 575–581 (2017). https://doi.org/10.1177/1933719116667219

    Article  Google Scholar 

  21. Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B.: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage 81, 335–346 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paddy J. Slator .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Slator, P.J. et al. (2019). A Framework for Calculating Time-Efficient Diffusion MRI Protocols for Anisotropic IVIM and An Application in the Placenta. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_20

Download citation

Publish with us

Policies and ethics