Longitudinal Harmonization for Improving Tractography in Baby Diffusion MRI

  • Khoi Minh Huynh
  • Jaeil Kim
  • Geng Chen
  • Ye Wu
  • Dinggang Shen
  • Pew-Thian YapEmail author
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


The human brain develops very rapidly in the first years of life, resulting in significant changes in water diffusion anisotropy. Developmental changes pose significant challenges to longitudinally consistent white matter tractography. In this paper, we will introduce a method to harmonize infant diffusion MRI data longitudinally across time. Specifically, we harmonize diffusion MRI data collected at an earlier time point to data collected at a later time point. This will promote longitudinal consistency and allow sharpening of fiber orientation distribution functions (ODFs) based on information available at the later time point. For this purpose, we will introduce an approach that is based on the method of moments, which allows harmonization to be performed directly on the diffusion-attenuated signal without the need to fit any diffusion models to the data. Given two diffusion MRI datasets, our method harmonizes them voxel-wise using well-behaving mapping functions (i.e., monotonic, diffeomorphic, etc.), parameters of which are determined by matching the spherical moments (i.e., mean, variance, skewness, etc.) of signal measurements on each shell. The mapping functions we use is isotropic and does not introduce new orientations that are not already in the original data. Our analysis indicates that longitudinal harmonization sharpens ODFs and improves tractography in infant diffusion MRI.


Longitudinal harmonization Diffusion MRI Method of moments Tractography 



This work was supported in part by NIH grants (1U01MH110274, NS093842, EB022880, and MH100217) and the efforts of the UNC/UMN Baby Connectome Project Consortium.


The authors declare that there is no conflict or commercial interest and the work is in compliance with the IRB regulations.


  1. 1.
    Hüppi, P.S., Maier, S.E., Peled, S., Zientara, G.P., Barnes, P.D., Jolesz, F.A., Volpe, J.J.: Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediat. Res. 44(4), 584 (1998)CrossRefGoogle Scholar
  2. 2.
    Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P.S., Hertz-Pannier, L.: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014)CrossRefGoogle Scholar
  3. 3.
    Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75(4), 1752–1763 (2016)CrossRefGoogle Scholar
  4. 4.
    Yap, P.T., Shen, D.: Spatial transformation of DWI data using non-negative sparse representation. IEEE Trans. Med. Imaging 31(11), 2035–2049 (2012)CrossRefGoogle Scholar
  5. 5.
    Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.C., Thiran, J.P., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: The Annual Meeting of the International Society for Magnetic Resonance in Medicine (2014)Google Scholar
  6. 6.
    Wu, H., Chen, G., Jin, Y., Shen, D., Yap, P.T.: Embarrassingly parallel acceleration of global tractography via dynamic domain partitioning. Front. Neuroinformatics 10(25) (2016)Google Scholar
  7. 7.
    Côté, M.A., Girard, G., Boré, A., Garyfallidis, E., Houde, J.C., Descoteaux, M.: Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17(7), 844–857 (2013)CrossRefGoogle Scholar
  8. 8.
    Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016)CrossRefGoogle Scholar
  9. 9.
    Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS). Insight J. 2, 1–35 (2009)Google Scholar
  10. 10.
    Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)CrossRefGoogle Scholar
  11. 11.
    Tournier, J.D., Calamante, F., Connelly, A.: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In: The Annual Meeting of the International Society for Magnetic Resonance in Medicine (2010) 1670Google Scholar
  12. 12.
    Mori, S., Wakana, S., Van Zijl, P.C., Nagae-Poetscher, L.: MRI Atlas of Human White Matter. Elsevier (2005)Google Scholar
  13. 13.
    Christiaens, D., Reisert, M., Dhollander, T., Sunaert, S., Suetens, P., Maes, F.: Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. NeuroImage 123, 89–101 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khoi Minh Huynh
    • 1
    • 2
  • Jaeil Kim
    • 2
  • Geng Chen
    • 2
  • Ye Wu
    • 2
  • Dinggang Shen
    • 1
    • 2
  • Pew-Thian Yap
    • 1
    • 2
    Email author
  1. 1.Biomedical Engineering DepartmentUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Radiology and BRICUniversity of North CarolinaChapel HillUSA

Personalised recommendations