Abstract
Coverage is a canonical task where a robot or a group of robots are required to visit every point in a given work area, typically within the shortest possible time. Previous work on offline coverage highlighted the benefits of determining a circular coverage path, divided into segments for different robots (if more than one). This paper contributes a number of significant improvements to the planning and utilization of circular coverage paths with single and multiple robots. We focus on circular paths that exactly decompose the environment into cells, where each obstacle-free cell is covered in a back-and-forth movement. We show that locally changing the coverage direction (alignment) in each cell can improve coverage time, and that this allows for merging bordering cells into larger cells, significantly reducing the number of turns taken by the robots. We additionally present a novel data structure to compactly represent all possible coverage and non-coverage paths between cells in the work area. Finally, we discuss the complexity of global multi-robot assignment of path segments, and present greedy polynomial-time approximations which provide excellent results in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agmon, N., Hazon, N., Kaminka, G.A.: The giving tree: constructing trees for efficient offline and online multi-robot coverage. Ann. Math. Artif. Intell. 52(2–4), 143–168 (2008)
Choset, H., Pignon, P.: Coverage Path Planning: The Boustrophedon Decomposition. Australia, Canberra (1997)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1987)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)
Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. Ann. Math. Artif. Intell. 31(1–4), 77–98 (2001)
Gage, D.W.: Command control for many-robot systems. In: The nineteenth annual AUVS Technical Symposium (AUVS-92) (1992)
Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013). http://www.sciencedirect.com/science/article/pii/S092188901300167X
Guan, M.K.: Graphic programming using odd or even points. Chin. Math. 1(3), 273–277 (1962)
Hazon, N., Kaminka, G.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)
Huang, W.H.: Optimal line-sweep-based decompositions for coverage algorithms. In: Proceedings the IEEE International Conference on Robotics and Automation, pp. 27–32 (2001)
Karapetyan, N., Benson, K., McKinney, C., Taslakian, P., Rekleitis, I.: Efficient multi-robot coverage of a known environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1846–1852 (2017)
Lumelsky, V.J., Mukhopadhyay, S., Sun, K.: Dynamic path planning in sensor-based terrain acquisition. IEEE Trans. Robot. Autom. 6(4), 462–472 (1990)
Rekleitis, I., New, A., E.S.R., Choset, H.,: Efficient boustrophedon multi-robot coverage: an algorithmic approach. Ann. Math. Artif. Intell. 52(2–4), 109–142 (2008)
Xu, A., Viriyasuthee, C., Rekleitis, I.: Efficient complete coverage of a known arbitrary environment with applications to aerial operations. Auton. Robot. 36(4), 365–381 (2014)
Acknowledgements
This research was supported by ISF grant #2306/18. As always, thanks to K. Ushi.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Alon, Lo., Agmon, N., Kaminka, G.A. (2019). Taking Turns in Complete Coverage for Multiple Robots. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-05816-6_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05815-9
Online ISBN: 978-3-030-05816-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)