Consensus Control of Distributed Robots Using Direction of Arrival of  Wireless Signals

  • Ramviyas ParasuramanEmail author
  • Byung-Cheol Min
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)


In multi-robot applications, consensus control and coordination are vital and potentially repetitive tasks. To circumvent practical limitations such as a global localization system, researchers have focused on bearing-based consensus controllers, but most assumed that measurements from sensors (e.g., vision) are noise-free. In this paper, we propose to use wireless signal measurements to estimate the direction of arrival (relative bearings) of neighboring robots and introduce a weighted bearing consensus controller to achieve coordinate-free distributed multi-robot rendezvous. We prove that the proposed controller guarantees connectivity maintenance and convergence even in the presence of measurement noise. We conduct extensive numerical simulation experiments using the Robotarium multi-robot platform to verify and demonstrate the properties of the proposed controller and to compare the performance of the rendezvous task against several state-of-the-art rendezvous controllers.


Multi-robot systems Consensus Rendezvous Wireless signals DOA 


  1. 1.
    Aranda, M., López-Nicolás, G., Sagüés, C.: Coordinate-free control of multirobot formations. In: Control of Multiple Robots Using Vision Sensors, pp. 131–181. Springer (2017)Google Scholar
  2. 2.
    Banfi, J., Li, A.Q., Basilico, N., Rekleitis, I., Amigoni, F.: Multirobot online construction of communication maps. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2577–2583, May 2017Google Scholar
  3. 3.
    Caccamo, S., Parasuraman, R., Båberg, F., Ögren, P.: Extending a UGV teleoperation FLC interface with wireless network connectivity information. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4305–4312. IEEE (2015)Google Scholar
  4. 4.
    Dantu, K., Goyal, P., Sukhatme, G.S.: Relative bearing estimation from commodity radios. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pp. 3871–3877. IEEE (2009)Google Scholar
  5. 5.
    Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)CrossRefGoogle Scholar
  6. 6.
    Dimarogonas, D.V., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Feng, Z., Sun, C., Hu, G.: Robust connectivity preserving rendezvous of multi-robot systems under unknown dynamics and disturbances. IEEE Trans. Control Netw. Syst. PP(99), 1–1 (2016)Google Scholar
  8. 8.
    Ghaffarkhah, A., Mostofi, Y.: Communication-aware motion planning in mobile networks. IEEE Trans. Autom. Control 56(10), 2478–2485 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gil, S., Kumar, S., Katabi, D., Rus, D.: Adaptive communication in multi-robot systems using directionality of signal strength. Int. J. Robot. Res. 34(7), 946–968 (2015)CrossRefGoogle Scholar
  10. 10.
    Gowal, S., Martinoli, A.: Bayesian rendezvous for distributed robotic systems. In: IEEE/RSJ 2011 International Conference on Intelligent Robots and Systems, pp. 2765–2771. IEEE (2011)Google Scholar
  11. 11.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 3, pp. 2953–2958, Dec 2002Google Scholar
  12. 12.
    Ji, M., Egerstedt, M.: Distributed coordination control of multi-agent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)CrossRefGoogle Scholar
  13. 13.
    Kriegleder, M., Digumarti, S.T., Oung, R., D’Andrea, R.: Rendezvous with bearing-only information and limited sensing range. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5941–5947. IEEE (2015)Google Scholar
  14. 14.
    La Salle, J.P.: The Stability of Dynamical Systems. SIAM (1976)Google Scholar
  15. 15.
    Li, B., Moridian, B., Mahmoudian, N.: Underwater multi-robot persistent area coverage mission planning. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–6, Sept 2016Google Scholar
  16. 16.
    Lin, J., Morse, A., Anderson, B.: The multi-agent rendezvous problem. an extended summary. In: Cooperative Control, pp. 257–289. Springer (2005)Google Scholar
  17. 17.
    Lindhé, M., Johansson, K.H., Bicchi, A.: An experimental study of exploiting multipath fading for robot communications. In: 3rd International Conference on Robotics Science and Systems, RSS 2007, 27–30 June 2007, Atlanta, GA, USA, pp. 289–296 (2008)Google Scholar
  18. 18.
    Lopez-Nicolas, G., Aranda, M., Mezouar, Y., Sagues, C.: Visual control for multirobot organized rendezvous. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(4), 1155–1168 (2012)CrossRefGoogle Scholar
  19. 19.
    Lowrance, C.J., Lauf, A.P.: Direction of arrival estimation for robots using radio signal strength and mobility. In: 2016 13th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6. IEEE (2016)Google Scholar
  20. 20.
    Mathew, N., Smith, S.L., Waslander, S.L.: A graph-based approach to multi-robot rendezvous for recharging in persistent tasks. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3497–3502. IEEE (2013)Google Scholar
  21. 21.
    Min, B.C., Matson, E.T., Jung, J.W.: Active antenna tracking system with directional antennas for enhancing wireless communication capabilities of a networked robotic system. J. Field Robot. 33(3), 391–406 (2016)CrossRefGoogle Scholar
  22. 22.
    Min, B.C., Parasuraman, R., Lee, S., Jung, J.W., Matson, E.T.: A directional antenna based leader-follower relay system for end-to-end robot communications. Robot. Auton. Syst. 101, 57–73 (2018)CrossRefGoogle Scholar
  23. 23.
    Montijano, E., Cristofalo, E., Zhou, D., Schwager, M., Sagüés, C.: Vision-based distributed formation control without an external positioning system. IEEE Trans. Robot. 32(2), 339–351 (2016)CrossRefGoogle Scholar
  24. 24.
    Mostofi, Y., Malmirchegini, M., Ghaffarkhah, A.: Estimation of communication signal strength in robotic networks. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1946–1951. IEEE (2010)Google Scholar
  25. 25.
    Muralidharan, A., Mostofi, Y.: Statistics of the distance traveled until connectivity for unmanned vehicles (2018). arXiv:1808.02538
  26. 26.
    Owen-Hill, A., Parasuraman, R., Ferre, M.: Haptic teleoperation of mobile robots for augmentation of operator perception in environments with low-wireless signal. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–7. IEEE (2013)Google Scholar
  27. 27.
    Parasuraman, R., Fabry, T., Molinari, L., Kershaw, K., Castro, M.D., Masi, A., Ferre, M.: A multi-sensor RSS spatial sensing-based robust stochastic optimization algorithm for enhanced wireless tethering. Sensors 14(12), 23970–24003 (2014)CrossRefGoogle Scholar
  28. 28.
    Park, H., Hutchinson, S.: An efficient algorithm for fault-tolerant rendezvous of multi-robot systems with controllable sensing range. In: 2016 IEEE International Conference on Robotics and Automation (ICRA 2016), pp. 358–365. IEEE (2016)Google Scholar
  29. 29.
    Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., Egerstedt, M.: The robotarium: a remotely accessible swarm robotics research testbed. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1699–1706. IEEE (2017)Google Scholar
  30. 30.
    Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)Google Scholar
  31. 31.
    Setter, T., Egerstedt, M.: Energy-constrained coordination of multi-robot teams. IEEE Trans. Control Syst. Technol. (2016)Google Scholar
  32. 32.
    Tang, Z.J., Huang, T.Z., Shao, J.L.: Consensus of multiagent systems with sampled information and noisy measurements. In: Discrete Dynamics in Nature and Society 2013 (2013)zbMATHGoogle Scholar
  33. 33.
    Twigg, J.N., Fink, J.R., Yu, P., Sadler, B.M.: RSS gradient-assisted frontier exploration and radio source localization. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 889–895. IEEE (2012)Google Scholar
  34. 34.
    Venkateswaran, S., Isaacs, J.T., Fregene, K., Ratmansky, R., Sadler, B.M., Hespanha, J.P., Madhow, U.: RF source-seeking by a micro aerial vehicle using rotation-based angle of arrival estimates. In: American Control Conference (ACC), 2013, pp. 2581–2587. IEEE (2013)Google Scholar
  35. 35.
    Wang, Y., Xie, Y., Cheng, L.: Leader-following consensus of multi-agent systems with dynamic leader and measurement noises. In: 2017 36th Chinese Control Conference (CCC), pp. 8379–8384. IEEE (2017)Google Scholar
  36. 36.
    Yu, J., LaValle, S.M., Liberzon, D.: Rendezvous without coordinates. IEEE Trans. Autom. Control 57(2), 421–434 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zavlanos, M., Egerstedt, M., Pappas, G.: Graph theoretic connectivity control of mobile robot networks. Proc. IEEE 99(9), 1525–1540 (2011)CrossRefGoogle Scholar
  38. 38.
    Zhao, S., Zheng, R.: Flexible bearing-only rendezvous control of mobile robots. In: 2017 36th Chinese Control Conference (CCC), pp. 8051–8056. IEEE (2017)Google Scholar
  39. 39.
    Zheng, R., Sun, D.: Rendezvous of unicycles: a bearings-only and perimeter shortening approach. Syst. Control Lett. 62(5), 401–407 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zheng, R., Sun, D.: Multirobot rendezvous with bearing-only or range-only measurements. Robot. Biomim. 1(1), 4 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of GeorgiaAthensUSA
  2. 2.SMART Lab, Department of Computer and Information TechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations