Microwave Radiometry of Atmospheric Precipitation: Radiative Transfer Simulations with Parallel Supercomputers

  • Yaroslaw IlyushinEmail author
  • Boris Kutuza
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)


In the present paper, the problems of formation and observation of spatial and angular distribution of thermal radiation of raining atmosphere in the millimeter wave band are addressed. Radiative transfer of microwave thermal radiation in three-dimensional dichroic medium is simulated numerically using high performance parallel computer systems. Governing role of three dimensional cellular inhomogeneity of the precipitating atmosphere in the formation of thermal radiation field is shown.


Microwave radiometry Precipitation Radiative transfer 



The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University. Support from the Russian Fundamental Research Fund with grants 13-02-12065 ofi-m and 15-02-05476 is also kindly acknowledged.


  1. 1.
    Basharinov, A.E., Gurvich, A.S., Egorov, S.T.: Radio Emission of the Earth as a Planet. Nauka, Moscow (1974)Google Scholar
  2. 2.
    Spencer, R., Goodman, H., Hood, R.: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Ocean. Technol. 6, 254–273 (1989)CrossRefGoogle Scholar
  3. 3.
    Roberti, L., Haferman, J., Kummerow, C.: Microwave radiative transfer through horizontally inhomogeneous precipitating clouds. J. Geophys. Res. 99(D8), 16707–16718 (1994)CrossRefGoogle Scholar
  4. 4.
    Battaglia, A., Davis, C., Emde, C., Simmer, C.: Microwave radiative transfer intercomparison study for 3-D dichroic media. J. Quant. Spectrosc. Radiat. Transf. 105(1), 55–67 (2007)CrossRefGoogle Scholar
  5. 5.
    Evtushenko, A.V., Zagorin, G., Kutuza, B.G., Sobachkin, A., Hornbostel, A., Schroth, A.: Determination of the Stokes vector of the microwave radiation emitted and scattered by the atmosphere with precipitation. Izv.-Atmos. Ocean. Phys. 38(4), 470–476 (2002)Google Scholar
  6. 6.
    Emde, C., Buehler, S.A., Davis, C., Eriksson, P., Sreerekha, T.R., Teichmann, C.: A polarized discrete ordinate scattering model for simulations of limb and nadir long-wave measurements in 1-D/3-D spherical atmospheres. J. Geophys. Res. Atmos. 109(D24), D24207 (2004)CrossRefGoogle Scholar
  7. 7.
    Ilyushin, Y., Seu, R., Phillips, R.: Subsurface radar sounding of the Martian polar cap: radiative transfer approach. Planet. Space Sci. 53(14–15), 1427–1436 (2005)CrossRefGoogle Scholar
  8. 8.
    Ilyushin, Y.A.: Radiative transfer in layered media: Application to the radar sounding of Martian polar ices. II. Planet. Space Sci. 55(1–2), 100–112 (2007)CrossRefGoogle Scholar
  9. 9.
    Weinman, J.A., Davies, R.: Thermal microwave radiances from horizontally finite clouds of hydrometeors. J. Geophys. Res. Ocean. 83(C6), 3099–3107 (1978)CrossRefGoogle Scholar
  10. 10.
    Begum, S., Otung, I.E.: Rain cell size distribution inferred from rain gauge and radar data in the UK. Radio Sci. 44(2) (2009). RS2015Google Scholar
  11. 11.
    Tsintikidis, D., Haferman, J.L., Anagnostou, E.N., Krajewski, W.F., Smith, T.F.: A neural network approach to estimating rainfall from spaceborne microwave data. IEEE Trans. Geosci. Remote. Sens. 35(5), 1079–1093 (1997)CrossRefGoogle Scholar
  12. 12.
    Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave Remote Sensing: Active and Passive, vol. 1. Addison-Wesley, Reading (1981)Google Scholar
  13. 13.
    Kutuza, B.G., Smirnov, M.T.: The influence of clouds on the radio-thermal radiation of the ‘atmosphere-ocean surface’ system. Issledovanie Zemli iz Kosmosa 1(3), 76–83 (1980)Google Scholar
  14. 14.
    Basharinov, A.E., Kutuza, B.G.: Determination of temperature dependence of the relaxation time of water molecules in clouds and possibilities for assessing the effective temperature of drop clouds by uhf radiometric measurements. Izv. Vyssh.Uchebn. Zaved., Radiofiz. 17(1), 52–57 (1974)Google Scholar
  15. 15.
    Czekala, H., Havemann, S., Schmidt, K., Rother, T., Simmer, C.: Comparison of microwave radiative transfer calculations obtained with three different approximations of hydrometeor shape. J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 545–558 (1999)CrossRefGoogle Scholar
  16. 16.
    Czekala, H., Simmer, C.: Microwave radiative transfer with nonspherical precipitating hydrometeors. J. Quant. Spectrosc. Radiat. Transf. 60(3), 365–374 (1998)CrossRefGoogle Scholar
  17. 17.
    Moroz, A.: Improvement of Mishchenko’s T-matrix code for absorbing particles. Appl. Opt. 44(17), 3604–3609 (2005)CrossRefGoogle Scholar
  18. 18.
    Hornbostel, A.: Investigation of Tropospheric Influences on Earth-satellite Paths by Beacon, Radiometer and Radar Measurements/Doctoral thesis (1995)Google Scholar
  19. 19.
    Ilyushin, Y.A., Kutuza, B.G.: Influence of a spatial structure of precipitates on polarization characteristics of the outgoing microwave radiation of the atmosphere. Izv.-Atmos. Ocean. Phys. 52(1), 74–81 (2016)CrossRefGoogle Scholar
  20. 20.
    Kummerow, C.: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteorol. 37(4), 356–370 (1998)CrossRefGoogle Scholar
  21. 21.
    Davis, C., Evans, K., Buehler, S., Wu, D., Pumphrey, H.: 3-D polarised simulations of space-borne passive mm/sub-mm midlatitude cirrus observations: a case study. Atmos. Chem. Phys. 7(15), 4149–4158 (2007)CrossRefGoogle Scholar
  22. 22.
    Kutuza, B.G., Hornbostel, A., Schroth, A.: Spatial inhomogeneities of rain brightness temperature and averaging effect for satellite microwave radiometer observations, vol. 3, pp. 1789–1791 (1994)Google Scholar
  23. 23.
    Kutuza, B.G., Zagorin, G.K., Hornbostel, A., Schroth, A.: Physical modeling of passive polarimetric microwave observations of the atmosphere with respect to the third Stokes parameter. Radio Sci. 33(3), 677–695 (1998)CrossRefGoogle Scholar
  24. 24.
    Kutuza, B.G., Zagorin, G.K.: Two-dimensional synthetic aperture millimeter-wave radiometric interferometric for measuring full-component Stokes vector of emission from hydrometeors. Radio Sci. 38(3), 8055 (2003)Google Scholar
  25. 25.
    Volosyuk, V.K., Gulyaev, Y.V., Kravchenko, V.F., Kutuza, B.G., Pavlikov, V.V., Pustovoit, V.I.: Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems. J. Commun. Technol. Electron. 59(2), 97–118 (2014)CrossRefGoogle Scholar
  26. 26.
    Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems. Interscience Publishers, New York (1967)zbMATHGoogle Scholar
  27. 27.
    Lebedev, V.: Quadrature formulas for a sphere of the 25–29th order of accuracy. Sib. Mat. Zh. 18(1), 132–142 (1977)CrossRefGoogle Scholar
  28. 28.
    Sadovnichy, V.A., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “lomonosov”: supercomputing at moscow state university. In: In Contemporary High Performance Computing: From Petascale toward Exascale, pp. 283–307. Chapman & Hall/CRC Computational Science, Boca Raton, USA, CRC Press (2013)Google Scholar
  29. 29.
    Ilyushin, Y.A., Kutuza, B.G.: New possibilities of the use of synthetic aperture millimeter-wave radiometric interferometer for precipitation remote sensing from space. Proceedings -: International Kharkov Symposium on Physics and Engineering of Microwaves. Millimeter and Submillimeter Waves, MSMW (2013), pp. 300–302 (2013)Google Scholar
  30. 30.
  31. 31.
    Evtushenko, A., Zagorin, G., Kutuza, B., Sobachkin, A., Hornbostel, A., Schroth, A.: Determination of the Stokes vector of the microwave radiation emitted and scattered by the atmosphere with precipitation. Izv.-Atmos. Ocean. Phys. 38(4), 470–476 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physical FacultyMoscow State UniversityMoscowRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations