Skip to main content

Microbial Communities of Red Sea Coral Reefs

  • Chapter
  • First Online:
Coral Reefs of the Red Sea

Part of the book series: Coral Reefs of the World ((CORW,volume 11))

Abstract

This chapter explores the microorganisms that inhabit different components of the coral reef ecosystem in the Red Sea. Microbes play crucial roles in numerous reef processes, including primary production as well as nutrient and organic matter cycling. Microbes are also ubiquitous symbionts of eukaryotic organisms, providing the host with nutrients, chemical cycling, and defensive functions. The Red Sea is a particularly interesting study system due to its unusual physiochemical properties, such as a strong north-south temperature and salinity gradient. Here we examine the influence of these unusual characteristics on microbes in the water column and sediments, and those associated with corals, sponges, and fish. In the water column, the microbial community indeed appears to correlate with prevailing north-south environmental conditions. For example, heterotrophic picoplankton and the cyanobacteria Synechococcus tend to be more abundant in the warmer, less saline, southern waters. On the other hand, the microbes associated with corals, sponges, and fish seem to be conserved throughout the Red Sea and many other parts of the world. For example, several coral species in the Red Sea harbor Endozoicomonas bacteria, and this is also observed world-wide. Moreover, the dominance of Epulopiscium bacteria in surgeonfish and highly conserved microbial communities in sponges are also commonly reported in other regions. In terms of microbial-based diseases, Red Sea corals display many typical disorders, including white syndromes, skeletal eroding band, black band disease, and growth anomalies, but these are rare within Red Sea waters. Thus, despite strong environmental extremes driving free-living microbial communities in the Red Sea, the microbes in tightly regulated symbiotic environments appear to be conserved, although strain-level and genotype specialization are areas of continuing research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aeby G (2005) Outbreak of coral disease in the Northwestern Hawaiian Islands. Coral Reefs 24:481–481

    Article  Google Scholar 

  • Aeby GS, Shore-Maggio A, Jensen T, Voolstra CR (2017) First record of crustose coralline algae diseases in the Red Sea. Bull Mar Sci 93:985–986

    Article  Google Scholar 

  • Ainsworth T, Kramasky-Winter E, Loya Y, Hoegh-Guldberg O, Fine M (2007) Coral disease diagnostics: what’s between a plague and a band? Appl Environ Microbiol 73:981–992

    Google Scholar 

  • Al-Moghrabi S (2001) Unusual black band disease (BBD) outbreak in the northern tip of the Gulf of Aqaba (Jordan). Coral Reefs 19:330–331

    Article  Google Scholar 

  • Alongi DM, Trott LA, Pfitzner J (2007) Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf. Cont Shelf Res 27:2595–2622

    Article  Google Scholar 

  • Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362:239–241

    Article  CAS  Google Scholar 

  • Antonius A (1985) Coral diseases in the Indo-Pacific: a first record. Mar Ecol 6:197–218

    Article  Google Scholar 

  • Antonius A (1988) Distribution and dynamics of coral diseases in the Eastern Red Sea. Proc 6th Int Coral Reef Symp:293–298

    Google Scholar 

  • Antonius A (1995) Sinai coral reef health survey I: first spot checks. Rep. Ras Mohamed Nat. Park Serv, Sinai, Egypt

    Google Scholar 

  • Antonius AA, Lipscomb D (2000) First protozoan coral-killer identified in the Indo-Pacific. Atoll Res Bull 481:1–21

    Article  Google Scholar 

  • Apprill A, Hughen K, Mincer T (2013) Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ Microbiol 15:2063–2072

    Article  CAS  Google Scholar 

  • Arotsker L, Siboni N, Ben-Dov E, Kramarsky-Winter E, Loya Y, Kushmaro A (2009) Vibrio sp. as a potentially important member of the Black Band Disease (BBD) consortium in Favia sp. corals. FEMS Microbiol Ecol 70:515–524

    Article  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol 10:257–263

    Article  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  CAS  Google Scholar 

  • Bak R (1983) Neoplasia, regeneration and growth in the reef-building coral Acropora palmata. Mar Biol 77:221–227

    Article  Google Scholar 

  • Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S, Hentschel U, Hirt H, Hülter N, Lachnit T, Picazo D, Pita L, Pogoreutz C, Rädecker N, Saad MM, Schmitz RA, Schulenburg H, Voolstra CR, Weiland-Bräuer N, Ziegler M, Bosch TCG (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127:1–19

    Article  Google Scholar 

  • Baranova O (2015) World ocean atlas 2005

    Google Scholar 

  • Barash Y, Sulam R, Loya Y, Rosenberg E (2005) Bacterial Strain BA-3 and a filterable factor cause a white plague-like disease in corals from the Eilat coral reef. Aquat Microb Ecol 40:183–189

    Article  Google Scholar 

  • Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2007) Characterization of black band disease in Red Sea stony corals. Environ Microbiol 9:1995–2006

    Article  CAS  Google Scholar 

  • Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013) The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol 79:4759–4762

    Article  CAS  Google Scholar 

  • Bednarz VN, van Hoytema N, Cardini U, Naumann MS, Al-Rshaidat MM, Wild C (2015) Dinitrogen fixation and primary productivity by carbonate and silicate reef sand communities of the Northern Red Sea. Mar Ecol Prog Ser 527:47–57

    Article  CAS  Google Scholar 

  • Bell J, Galzin R (1984) Influence of live coral cover on coral-reef fish communities. Mar Ecol Prog Ser 15:265–274

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  Google Scholar 

  • Ben-Haim Y (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    Article  CAS  Google Scholar 

  • Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JEM, Khalil MT, Miyake S, Mughal MR, Spaet JLY, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748

    Article  Google Scholar 

  • Biller SJ, Berube PM, Lindell D, Chisholm SW (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27

    Article  CAS  Google Scholar 

  • Boelen P, Post AF, Veldhuis MJW, Buma AGJ (2002) Diel patterns of UVBR-induced DNA damage in picoplankton size fractions from the Gulf of Aqaba, Red Sea. Microb Ecol 44:164–174

    Article  CAS  Google Scholar 

  • Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD (2009) Microbial disease and the coral holobiont. Trends Microbiol 17:554–562

    Article  CAS  Google Scholar 

  • Bourne DG, Ainsworth TD, Willis BL (2015) White syndromes of indo-Pacific corals. In: Diseases of coral. Wiley, Hoboken, pp 300–315

    Chapter  Google Scholar 

  • Bowman JP, Nowak B (2004) Salmonid gill bacteria and their relationship to amoebic gill disease. J Fish Dis 27:483–492

    Article  CAS  Google Scholar 

  • Bresler V, Montgomery WL, Fishelson L, Pollak PE (1998) Gigantism in a bacterium, Epulopiscium fishelsoni, correlates with complex patterns in arrangement, quantity, and segregation of DNA. J Bacteriol 180:5601–5611

    CAS  Google Scholar 

  • Cantarel BL, Lombard V, Henrissat B (2012) Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7:e28742

    Article  CAS  Google Scholar 

  • Cardenas A, Neave MJ, Haroon MF, Pogoreutz C, Radecker N, Wild C, Gardes A, Voolstra CR (2017) Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J 12(1):59–76

    Article  CAS  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–364

    Article  Google Scholar 

  • Ceh J, Raina JB, Soo RM, van Keulen M, Bourne DG (2012) Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef. PLoS One 7:e36920

    Article  CAS  Google Scholar 

  • Chen C-P, Tseng C-H, Chen CA, Tang S-L (2011) The dynamics of microbial partnerships in the coral Isopora palifera. ISME J 5:728–740

    Article  CAS  Google Scholar 

  • Clements KD, Bullivant S (1991) An unusual symbiont from the gut of surgeonfishes may be the largest known prokaryote. J Bacteriol 173:5359–5362

    Article  CAS  Google Scholar 

  • Clements KD, Sutton DC, Choat JH (1989) Occurrence and characteristics of unusual protistan symbionts from surgeonfishes (Acanthuridae) of the great barrier-reef, Australia. Mar Biol 102:403–412

    Article  Google Scholar 

  • Clements KD, Pasch IBY, Moran D, Turner SJ (2007) Clostridia dominate 16S rRNA gene libraries prepared from the hindgut of temperate marine herbivorous fishes. Mar Biol 150:1431–1440

    Article  CAS  Google Scholar 

  • Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what’s known and what’s not. Mol Ecol 95:1891–1898

    Google Scholar 

  • Colorn A, Diamant A, Eldar A, Kvitt H, Zlotkin A (2002) Streptococcus iniae infections in Red Sea cage-cultured and wild fishes. Dis Aquat Org 49:165–170

    Article  CAS  Google Scholar 

  • Cooney RP, Pantos O, Le Tissier MD, Barer MR, Bythell JC (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413

    Article  Google Scholar 

  • Daniels C, Baumgarten S, Yum LK, Michell CT, Bayer T, Arif C, Roder C, Weil E, Voolstra CR (2015) Metatranscriptome analysis of the reef-buidling coral Orbicella faveolata indicates holobiont response to coral disease. Front Mar Sci 2

    Google Scholar 

  • Diamant A (2001) Cross-infections between marine cage-cultured stocks and wild fish in the northern Red Sea: is the environment at risk? Risk Analysis in Aquatic Animal Health, Proceedings, 202–208

    Google Scholar 

  • Diamant A, Banet A, Ucko M, Colorni A, Knibb W, Kvitt H (2000) Mycobacteriosis in wild rabbitfish Siganus rivulatus associated with cage farming in the Gulf of Eilat, Red Sea. Dis Aquat Org 39:211–219

    Article  CAS  Google Scholar 

  • Ducklow HW (1990) The biomass, production and fate of bacteria in coral reefs. In: Dubinsky Z (ed) Ecosystems of the world 25: coral reefs. Elsevier Science Publishing, Amsterdam, pp 265–289

    Google Scholar 

  • Fidopiastis PM, Bezdek DJ, Horn MH, Kandel JS (2006) Characterizing the resident, fermentative microbial consortium in the hindgut of the temperate-zone herbivorous fish, Hermosilla azurea (Teleostei: Kyphosidae). Mar Biol 148:631–642

    Article  CAS  Google Scholar 

  • Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  CAS  Google Scholar 

  • Fishelson L (1999) Polymorphism in gigantobacterial symbionts in the guts of surgeonfish (Acanthuridae: Teleostei). Mar Biol 133:345–351

    Article  Google Scholar 

  • Fishelson L, Montgomery WL, Myrberg AA (1985) A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae, Teleostei) from the Red-Sea. Science 229:49–51

    Article  Google Scholar 

  • Flint JF, Drzymalski D, Montgomery WL, Southam G, Angert ER (2005) Nocturnal production of endospores in natural populations of epulopiscium-like surgeonfish symbionts. J Bacteriol 187:7460–7470

    Article  CAS  Google Scholar 

  • Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    Article  CAS  Google Scholar 

  • Fuller NJ, West NJ, Marie D, Yallop M, Rivlin T, Post AF, Scanlan DJ (2005) Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol Oceanogr 50:363–375

    Article  CAS  Google Scholar 

  • Furby KA, Apprill A, Cervino JM, Ossolinski JE, Hughen KA (2014) Incidence of lesions on Fungiidae corals in the eastern Red Sea is related to water temperature and coastal pollution. Mar Environ Res 98:29–38

    Article  CAS  Google Scholar 

  • Gaidos E, Rusch A, Ilardo M (2011) Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: community spatial structure, rare members and nitrogen-cycling guilds. Environ Microbiol 13:1138–1152

    Article  Google Scholar 

  • Gajardo K, Jaramillo-Torres A, Kortner TM, Merrifield DL, Tinsley J, Bakke AM, Krogdahl A (2017) Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic Salmon (Salmo salar). Appl Environ Microbiol 83

    Google Scholar 

  • Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by percoll density gradient fractionation. Cell Tissue Res 293:365–373

    Article  CAS  Google Scholar 

  • Giles EC, Kamke J, Moitinho-Silva L et al (2013) Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol 83:232–241

    Article  CAS  Google Scholar 

  • Givens CE, Ransom B, Bano N, Hollibaugh JT (2015) Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Prog Ser 518:209–223

    Article  Google Scholar 

  • Gladfelter WB (1982) White-band disease in Acropora palmata: implications for the structure and growth of shallow reefs. Bull Mar Sci 32:639–643

    Google Scholar 

  • Hadaidi G, Röthig T, Yum LK, Ziegler M, Arif C, Roder C, Burt J, Voolstra CR (2017) Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci Rep 7:45362

    Article  CAS  Google Scholar 

  • Hadaidi G, Ziegler M, Shore-Maggio A, Jensen T, Aeby G, Voolstra CR (2018) Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ 6:e5169

    Article  Google Scholar 

  • Hehemann JH, Kelly AG, Pudlo NA, Martens EC, Boraston AB (2012) Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A 109:19786–19791

    Article  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  CAS  Google Scholar 

  • Huber I, Spanggaard B, Appel KF, Rossen L, Nielsen T, Gram L (2004) Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 96:117–132

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson J, Kleypas J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Irikawa A, Casareto BE, Suzuki Y, Agostini S, Hidaka M, van Woesik R (2011) Growth anomalies on Acropora cytherea corals. Mar Pollut Bull 62:1702–1707

    Article  CAS  Google Scholar 

  • Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C, Voolstra CR (2013) In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea coral Acropora hemprichii. PLoS One 8:e62091

    Article  CAS  Google Scholar 

  • Kelly LW, Williams GJ, Barott KL, Carlson CA, Dinsdale EA, Edwards RA, Haas AF, Haynes M, Lim YW, McDole T, Nelson CE, Sala E, Sandin SA, Smith JE, Vermeij MJA, Youle M, Rohwer F (2014) Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc Natl Acad Sci 111:10227–10232

    Article  CAS  Google Scholar 

  • Kim DH, Brunt J, Austin B (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 102:1654–1664

    Article  CAS  Google Scholar 

  • Klinker J, Reiss Z, Kropach C, Levanon I, Harpaz H, Halicz E, Assaf G (1976) Observations on the circulation pattern in the Gulf of Elat (Aqaba), Red Sea. Isr J Earth Sci 25:85–103

    Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62

    Article  Google Scholar 

  • Konow N, Bellwood DR, Wainwright PC, Kerr AM (2008) Evolution of novel jaw joints promote trophic diversity in coral reef fishes. Biol J Linn Soc 93:545–555

    Article  Google Scholar 

  • Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, Kushmaro A (2007) Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol Lett 276:106–113

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral Endosymbionts. Curr Biol 28:2570–2580. e2576

    Article  CAS  Google Scholar 

  • Lampert Y, Kelman D, Nitzan Y, Dubinsky Z, Behar A, Hill RT (2008) Phylogenetic diversity of bacteria associated with the mucus of Red Sea corals. FEMS Microbiol Ecol 64:187–198

    Article  CAS  Google Scholar 

  • Larsen A, Tao Z, Bullard SA, Arias CR (2013) Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 85:483–494

    Article  CAS  Google Scholar 

  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664

    Article  CAS  Google Scholar 

  • Lee OO, Yang J, Bougouffa S, Wang Y, Batang Z, Tian R, Al-Suwailem A, Qian PY (2012) Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol 78:7173–7184

    Article  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  Google Scholar 

  • Lindell D (2005) Expression of the nitrogen stress response gene ntcA reveals nitrogen sufficient Synechococcus populations in the oligotrophic northern Red Sea. Limnol Oceanogr 50:1932

    Article  CAS  Google Scholar 

  • Loya Y (2004) The coral reefs of Eilat—past, present and future: three decades of coral community structure studies. In: Coral health and disease. Springer, Berlin, pp 1–34

    Google Scholar 

  • Lyons PP, Turnbull JF, Dawson KA, Crumlish M (2017) Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings. J Appl Microbiol 122:347–363

    Article  CAS  Google Scholar 

  • Mackie RI (1997) Gut environment and evolution of mutualistic fermentative digestion. In: Gastrointestinal microbiology, pp 13–35

    Chapter  Google Scholar 

  • Maldonado M, Cortadellas N, Trillas MI, Rützler K (2005) Endosymbiotic yeast maternally transmitted in a marine sponge. Biol Bull 209:94–106

    Article  CAS  Google Scholar 

  • Maynard J, Van Hooidonk R, Eakin CM, Puotinen M, Garren M, Williams G, Heron SF, Lamb J, Weil E, Willis B (2015) Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat Clim Chang 5:688–694

    Article  Google Scholar 

  • Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  CAS  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110:3229–3236

    Article  Google Scholar 

  • McMahon KW, Thorrold SR, Houghton LA, Berumen ML (2015) Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180:809–821

    Article  Google Scholar 

  • McNally SP, Parsons RJ, Santoro AE, Apprill A (2016) Multifaceted impacts of the stony coral Porites astreoides on picoplankton abundance and community composition. Limnol Oceanogr 62:217–234

    Article  CAS  Google Scholar 

  • McNally SP, Parsons RJ, Santoro AE, Apprill A (2017) Multifaceted impacts of the stony coral Porites astreoides on picoplankton abundance and community composition. Limnol Oceanogr 62:217–234

    Article  CAS  Google Scholar 

  • Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 5:51–60

    Article  Google Scholar 

  • Miller AW, Richardson LL (2011) A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. FEMS Microbiol Ecol 75:231–241

    Article  CAS  Google Scholar 

  • Mitchell SO, Rodger HD (2011) A review of infectious gill disease in marine salmonid fish. J Fish Dis 34:411–432

    Article  CAS  Google Scholar 

  • Miyake S, Ngugi DK, Stingl U (2015) Diet strongly influences the gut microbiota of surgeonfishes. Mol Ecol 24:656–672

    Article  Google Scholar 

  • Miyake S, Ngugi DK, Stingl U (2016) Phylogenetic diversity, distribution, and cophylogeny of giant bacteria (Epulopiscium) with their surgeonfish hosts in the Red Sea. Front Microbiol 7

    Google Scholar 

  • Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, Ravasi T, Hentschel U (2014) Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Mol Ecol 23:1348–1363

    Article  CAS  Google Scholar 

  • Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu YC, McCormack GP, Lopez-Legentil S, Marchant R, Webster N, Thomas T, Hentschel U (2017) Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol 8:752

    Article  Google Scholar 

  • Montgomery WL, Pollak PE (1988) Epulopiscium-Fishelsoni Ng, N-Sp, a protist of uncertain taxonomic affinities from the gut of an herbivorous reef fish. J Protozool 35:565–569

    Article  Google Scholar 

  • Naumann MS, Richter C, El-Zibdah M, Wild C (2009) Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic-benthic coupling in the reef ecosystem. Mar Ecol Prog Ser 385:65–76

    Article  Google Scholar 

  • Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573

    Article  Google Scholar 

  • Nealson KH (1997) Sediment bacteria: who’s there, what are they doing, and what’s new? Annu Rev Earth Planet Sci 25:403–434

    Google Scholar 

  • Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 100:8315–8324

    Article  CAS  Google Scholar 

  • Neave M, Michell C, Apprill A, Voolstra CR (2017a) Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep 7:40579

    Google Scholar 

  • Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR (2017b) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J 11:186–200

    Article  Google Scholar 

  • Nelson JS (2006) Fishes of the world. Wiley, Hoboken

    Google Scholar 

  • Nelson CE, Alldredge AL, McCliment EA, Amaral-Zettler LA, Carlson CA (2011) Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J 5:1374–1387

    Article  CAS  Google Scholar 

  • Nielsen S, Wilkes Walburn J, Verges A, Thomas T, Egan S (2017) Microbiome patterns across the gastrointestinal tract of the rabbitfish Siganus fuscescens. PeerJ 5:e3317

    Article  CAS  Google Scholar 

  • O’Rourke A, Kremb S, Bader T, Helfer M, Schmitt-Kopplin P, Gerwick W, Brack-Werner R, Voolstra C (2016) Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of Human Immunodeficiency virus 1 (HIV-1). Mar Drugs 14:28

    Article  CAS  Google Scholar 

  • O’Rourke A, Kremb S, Duggan B, Sioud S, Kharbatia N, Raji M, Emwas A-H, Gerwick W, Voolstra C (2018) Identification of a 3-Alkylpyridinium compound from the Red Sea sponge Amphimedon chloros with in vitro inhibitory activity against the West Nile virus NS3 protease. Molecules 23:1472

    Article  CAS  Google Scholar 

  • Parris DJ, Brooker RM, Morgan MA, Dixson DL, Stewart FJ (2016) Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement. PeerJ 4:e2412

    Article  Google Scholar 

  • Partensky F, Blanchot J, and Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull Inst océanogr NS19:457–475

    Google Scholar 

  • Peters EC, Halas JC, McCarty HB (1986) Calicoblastic neoplasms in Acropora palmata, with a review of reports on anomalies of growth and form in corals. J Natl Cancer Inst 76:895–912

    CAS  Google Scholar 

  • Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C (2017) Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol 23:3838–3848

    Article  Google Scholar 

  • Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR (2018) Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 8:2240–2252

    Google Scholar 

  • Porter JW, Dustan P, Jaap WC, Patterson KL, Kosmynin V, Meier OW, Patterson ME, Parsons M (2001) Patterns of spread of coral disease in the Florida keys. In: The ecology and etiology of newly emerging marine diseases. Springer, pp 1–24

    Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci U S A 93:6241–6246

    Article  CAS  Google Scholar 

  • Qian P-Y, Wang Y, Lee OO, Lau SCK, Yang J, Lafi FF, Al-Suwailem A, Wong TYH (2011) Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J 5:507–518

    Article  CAS  Google Scholar 

  • Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie YL, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu HM, Yu C, Li ST, Jian M, Zhou Y, Li YR, Zhang XQ, Li SG, Qin N, Yang HM, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Consortium M (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–U70

    Article  CAS  Google Scholar 

  • Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497

    Article  CAS  Google Scholar 

  • Radwan M, Hanora A, Zan J, Mohamed NM, Abo-Elmatty DM, Abou-El-Ela SH, Hill RT (2010) Bacterial community analyses of two Red Sea sponges. Mar Biotechnol (NY) 12:350–360

    Article  CAS  Google Scholar 

  • Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  CAS  Google Scholar 

  • Rasheed M, Badran MI, Huettel M (2003) Influence of sediment permeability and mineral composition on organic matter degradation in three sediments from the Gulf of Aqaba, Red Sea. Estuar Coast Shelf Sci 57:369–384

    Article  CAS  Google Scholar 

  • Raymundo LJ, Harvell CD, Reynolds TL (2003) Porites ulcerative white spot disease: description, prevalence, and host range of a new coral disease affecting Indo-Pacific reefs. Dis Aquat Org 56:95–104

    Article  Google Scholar 

  • Raymundo LJ, Halford AR, Maypa AP, Kerr AM (2010) Functionally diverse reef-fish communities ameliorate coral disease. Proc Natl Acad Sci 107:514–514

    Article  CAS  Google Scholar 

  • Ribes M, Coma R, Atkinson MJ, Kinzie RAI (2003) Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar Ecol Prog Ser 257:13–23

    Article  Google Scholar 

  • Richardson L (1996) Horizontal and vertical migration patterns of Phorrnidium corallyticum and Beggiatoa spp. associated with black-band disease of corals. Microb Ecol 32:323–335

    Article  CAS  Google Scholar 

  • Richardson LL (2004) Black band disease. In: Coral health and disease. Springer, Berlin, pp 325–336

    Chapter  Google Scholar 

  • Richardson LL, Miller AW, Broderick E, Kaczmarsky L, Gantar M, Sekar R (2009) Sulfide, microcystin, and the etiology of black band disease. Dis Aquat Org 87:79

    Article  CAS  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  Google Scholar 

  • Roder C, Arif C, Bayer T, Aranda M, Daniels C, Shibl A, Chavanich S, Voolstra CR (2014a) Bacterial profiling of white plague disease in a comparative coral species framework. ISME J 8:31–39

    Article  CAS  Google Scholar 

  • Roder C, Arif C, Daniels C, Weil E, Voolstra CR (2014b) Bacterial profiling of white plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol Ecol 23:965–974

    Article  Google Scholar 

  • Roder C, Bayer T, Aranda M, Kruse M, Voolstra CR (2015) Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol Ecol 24:3501–3511

    Article  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608

    Article  CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Roik A, Röthig T, Roder C, Ziegler M, Kremb SG, Voolstra CR (2016) Year-long monitoring of Physico-chemical and biological variables provide a comparative baseline of coral reef functioning in the Central Red Sea. PLoS One 11:e0163939

    Article  CAS  Google Scholar 

  • Röthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR (2016) Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol 25:1308–1323

    Article  CAS  Google Scholar 

  • Röthig T, Roik A, Yum LK, Voolstra CR (2017a) Distinct bacterial microbiomes associate with the Deep-Sea coral Eguchipsammia fistula from the Red Sea and from aquaria settings. Front Mar Sci 4:259

    Article  Google Scholar 

  • Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR (2017b) Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci Rep 7:44714

    Article  CAS  Google Scholar 

  • Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, Wang X, Haywood A, Lafi FF, Kupresanin M, Sougrat R, Alzahrani MA, Giles E, Ghosheh Y, Schunter C, Baumgarten S, Berumen ML, Gao X, Aranda M, Foret S, Gough J, Voolstra CR, Hentschel U, Ravasi T (2016) Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 17:1–11

    Article  CAS  Google Scholar 

  • Schöttner S, Pfitzner B, Grünke S, Rasheed M, Wild C, Ramette A (2011) Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ Microbiol 13:1815–1826

    Article  CAS  Google Scholar 

  • Schulz HN, Jorgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137

    Article  CAS  Google Scholar 

  • Sharp KH, Eam B, Faulkner DJ, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629

    Article  CAS  Google Scholar 

  • Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Article  Google Scholar 

  • Simister R, Taylor MW, Tsai P, Webster N (2012) Sponge-microbe associations survive high nutrients and temperatures. PLoS One 7:e52220

    Article  CAS  Google Scholar 

  • Smriga S, Sandin SA, Azam F (2010) Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol Ecol 73:31–42

    CAS  Google Scholar 

  • Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    Google Scholar 

  • Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS One 5:e9554

    Article  CAS  Google Scholar 

  • Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens identified for white syndrome (WS) epizootics in the indo-Pacific. PLoS One 3:e2393

    Article  CAS  Google Scholar 

  • Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean and indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser 266:265–272

    Article  Google Scholar 

  • Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol

    Google Scholar 

  • Thacker RW, Starnes S (2003) Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol 142:643–648

    Article  CAS  Google Scholar 

  • Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA, Sapp J, Vandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR (2016) Getting the Hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1(2): e00028-16

    Google Scholar 

  • Thompson F, Barash Y, Sawabe T, Sharon G, Swings J, Rosenberg E (2006) Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 56:365–368

    Article  CAS  Google Scholar 

  • Thompson LR, Field C, Romanuk T, Kamanda Ngugi D, Siam R, El Dorry H, Stingl U (2013) Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments. Ecol Evol 3:1780–1797

    Article  Google Scholar 

  • Ushijima B, Smith A, Aeby GS, Callahan SM (2012) Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS One 7:e46717

    Article  CAS  Google Scholar 

  • Ushijima B, Videau P, Burger AH, Shore-Maggio A, Runyon CM, Sudek M, Aeby GS, Callahan SM (2014) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol 80:2102–2109

    Article  CAS  Google Scholar 

  • Vacelet J (1982) Algal-sponge symbioses in the coral reefs of New Caledonia: a morphological study. In: 4th international coral reef. University of the Philippines, S. Manila, Philippines, pp 713–719

    Google Scholar 

  • Van Soest PJ (1982) Nutritional ecology of the ruminants. Cornell University Press 2:11–45

    Google Scholar 

  • Vargas-Ángel B (2009) Coral health and disease assessment in the US Pacific remote island areas. Bull Mar Sci 84:211–227

    Google Scholar 

  • Wang W, Zhou Z, He S, Liu Y, Cao Y, Shi P, Yao B, Ringø E (2010) Identification of the adherent microbiota on the gills and skin of poly-cultured gibel carp (Carassius auratus gibelio) and bluntnose black bream (Megalobrama amblycephala Yih). Aquac Res 41

    Google Scholar 

  • Ward NL, Steven B, Penn K, Methe BA, Detrich WH (2009) Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles 13:679–685

    Article  Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  CAS  Google Scholar 

  • Wild C, Rasheed M, Jantzen C, Cook P, Struck U, Huettel M, Boetius A (2005a) Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the northern Red Sea. Mar Ecol Prog Ser 298:69–78

    Article  CAS  Google Scholar 

  • Wild C, Woyt H, Huettel M (2005b) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    Article  CAS  Google Scholar 

  • Wild C, Naumann MS, Haas A, Struck U, Mayer FW, Rasheed MY, Huettel M (2009) Coral sand O2 uptake and pelagic–benthic coupling in a subtropical fringing reef, Aqaba, Red Sea. Aquat Biol 6:133–142

    Article  Google Scholar 

  • Wilkins LG, Fumagalli L, Wedekind C (2016) Effects of host genetics and environment on egg-associated microbiotas in brown trout (Salmo trutta). Mol Ecol 25:4930–4945

    Article  CAS  Google Scholar 

  • Willis BL, Page CA, Dinsdale EA (2004) Coral disease on the great barrier reef. In: Coral health and disease. Springer, Berlin, pp 69–104

    Chapter  Google Scholar 

  • Winkler R, Antonius A, Abigail Renegar D (2004) The skeleton eroding band disease on coral reefs of Aqaba, Red Sea. Mar Ecol 25:129–144

    Article  Google Scholar 

  • Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF, Good C (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large Core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microbiol 79:4974–4984

    Article  CAS  Google Scholar 

  • Work TM, Aeby GS, Coles SL (2007) Distribution and morphology of growth anomalies in Acropora from the Indo-Pacific. Dis Aquat Organ 78:255

    Article  Google Scholar 

  • Work TM, Forsman ZH, Szabó Z, Lewis TD, Aeby GS, Toonen RJ (2011) Inter-specific coral chimerism: genetically distinct multicellular structures associated with tissue loss in Montipora capitata. PLoS One 6:e22869

    Article  CAS  Google Scholar 

  • Work TM, Russell R, Aeby GS (2012) Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes. Proc R Soc Lond B Biol Sci. https://doi.org/10.1098/rspb.2012.1827

  • Yahel G, Post AF, Fabricius K, Marie D, Vaulot D, Genin A (1998) Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr 43:551–563

    Article  Google Scholar 

  • Yamashiro H, Yamamoto M, van Woesik R (2000) Tumor formation on the coral Montipora informis. Dis Aquat Org 41:211–217

    Article  CAS  Google Scholar 

  • Yeo SK, Huggett MJ, Eiler A, Rappé MS (2013) Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS One 8:e56207

    Article  CAS  Google Scholar 

  • Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, Katouli M, Bowman JP (2014) Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. J Appl Microbiol 117:18–27

    Article  CAS  Google Scholar 

  • Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT (2015) Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci 112:4381–4386

    Article  CAS  Google Scholar 

  • Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the Central Red Sea. Mar Pollut Bull 105:629–640

    Article  CAS  Google Scholar 

  • Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213

    Article  CAS  Google Scholar 

  • Zvuloni A, Artzy-Randrup Y, Stone L, Kramarsky-Winter E, Barkan R, Loya Y (2009) Spatio-temporal transmission patterns of black-band disease in a coral community. PLoS One 4:e4993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian R. Voolstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neave, M.J., Apprill, A., Aeby, G., Miyake, S., Voolstra, C.R. (2019). Microbial Communities of Red Sea Coral Reefs. In: Voolstra, C., Berumen, M. (eds) Coral Reefs of the Red Sea. Coral Reefs of the World, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-05802-9_4

Download citation

Publish with us

Policies and ethics