Skip to main content

Environmental Setting for Reef Building in the Red Sea

  • Chapter
  • First Online:
Coral Reefs of the Red Sea

Part of the book series: Coral Reefs of the World ((CORW,volume 11))

Abstract

The Red Sea is a distinct marine system, which, due to its limited lateral extent, is strongly influenced by the surrounding arid and semiarid terrestrial environment. Among large marine bodies, it is unusually saline, owing to a high rate of evaporation relative to precipitation, and warm. The physical environment of the Red Sea has been subject to scientific research for more than a century, with considerable advances in understanding achieved in the past two decades. In this chapter, we review the current state of knowledge of the Red Sea’s physical/chemical system. The bulk of the chapter deals with the marine environment. Attention is given to a variety of topics, including: tides and lower-frequency motions of the sea surface, circulation over a range of space and time scales, the surface wave field, and the distributions of water properties, nutrients, chlorophyll-a (chl-a) and light. We also review the current understanding of atmospheric conditions affecting the Red Sea, focusing on how atmospheric circulation patterns of various scales influence the exchange of momentum, heat, and mass at the surface of the Red Sea. A subsection is devoted to geology and reef morphology, with a focus on reef-building processes in the Red Sea. Finally, because reef building and health are tightly linked with carbonate chemistry, we review the Red Sea carbonate system, highlighting recent advances in the understanding of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman SM (1997) Seasonal fluctuations of mean sea level at Gizan, Red Sea, 2009. J Coast Res 13:1166–1172

    Google Scholar 

  • Abdulsalam A, Majambo G (2014) Remote sensing of phytoplankton distribution in the Red Sea and Gulf of Aden. Acta Oceanol Sin 33(9):93–99. https://doi.org/10.1007/s13131-014-0527-1

    Article  Google Scholar 

  • Aboobacker VM, Shanas PR, Alsaafani MA, Albarakati AMA (2017) Wave energy resource assessment for Red Sea. Renew Energy 114A:46–58

    Article  Google Scholar 

  • Acker J, Leptoukh G, Shen S, Zhu T, Kempler S (2008) Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs. J Mar Syst 69:191–204

    Article  Google Scholar 

  • Ahmad F, Sultan SAR, Moammar MO (1989) Monthly variations of net heat flux at the air-sea interface in coastal waters near Jeddah, Red Sea. Atmos Ocean 27(2):406–413. https://doi.org/10.1080/07055900.1989.9649343

    Article  Google Scholar 

  • Ali EB, Churchill JH, Barthel K, Skjelvan I, Omar AM, de Lange TE, Eltaib E (2018) Seasonal variations of hydrographic parameters off the Sudanese coast of the Red Sea, 2009–2015. Reg Stud Mar Sci 18:1–10. https://doi.org/10.1016/j.rsma.2017.12.004

    Article  Google Scholar 

  • Almogi-Labin A, Hemleben C, Meischner D, Erlekeuser H (1991) Paleoenvironmental events during the last 13000 years in the Central Red Sea as recorded by pteropoda. Paleoceanography 6:83–98

    Article  Google Scholar 

  • Almogi-Labin A, Edelman-Furstenberg Y, Hemleben C (2008) Variations in the biodiversity of thecosomatous pteropods during the Late Quarternary as a response to environmental change in the Gulf of Aden – Red Sea – Gulf of Aqaba ecosystem. In: Por FD (ed) Aqaba-Eilat, the improbable Gulf. The Hebrew University Magnes Press, Jerusalem, pp 31–49

    Google Scholar 

  • Al-Rifaiy IA, Cherif OH (1988) The fossil coral reefs of Al-Aqaba, Jordan. Facies 18:219–230

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516

    Article  CAS  Google Scholar 

  • Arz HW, Lamy F, Ganopolski A, Nowaczyk N, Pätzold J (2007) Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quat Sci Rev 26:312–321

    Article  Google Scholar 

  • Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J Geophys Res Oceans 112:C9013–C9039

    Article  CAS  Google Scholar 

  • Ben-Avraham Z, Almagor G, Garfunkel Z (1979) Sediments and structure of the gulf of Elat (Aqaba) - Northern Red Sea. Sediment Geol 23:239–267

    Article  Google Scholar 

  • Bethoux JP (1988) Red Sea geochemical budgets and exchanges with the Indian Ocean. Mar Chem 24:83–92

    Article  CAS  Google Scholar 

  • Biton E, Gildor H, Peltier WR (2008) Red Sea during the last glacial maximum: implications for sea level reconstruction. Paleoceanography 23:PA1214

    Article  Google Scholar 

  • Biton E, Trommer G, Siccha M, Kucera M, van der Meer MTJ, Schouten S (2010) Sensitivity of Red Sea circulation to monsoonal variability during the Holocene: an integrated data and modeling study. Paleoceanography 25:PA4209

    Article  Google Scholar 

  • Bohannon RG (1986) Tectonic configuration of the Western Arabian continental margin, southern Red Sea. Tectonics 5:477–499

    Article  Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316:33–37

    Article  Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43:334–378

    Article  Google Scholar 

  • Bower AS, Farrar JT (2015) Air–Sea interaction and horizontal circulation in the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea, Springer earth system sciences. Springer, Berlin/Heidelberg, pp 349–342. https://doi.org/10.1007/978-3-662-45201-1_19

    Chapter  Google Scholar 

  • Braithwaite CJR (1987) Geology and paleogeography of the Red Sea region. In: Edwards AJ, Head SM (eds) Red Sea. Pergamon Press, pp 22–44

    Google Scholar 

  • Brewer PG, Goldman JC (1976) Alkalinity changes generated by phytoplankton growth. Limnol Oceanogr 21:108–117

    Article  CAS  Google Scholar 

  • Brindley H, Osipov S, Bantges R, Smirnov A, Banks J, Levy R, Jish Prakash P, Stenchikov G (2015) An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region. J Geophys Res Atmos 120:10,862–10,878. https://doi.org/10.1002/2015JD023282

    Article  Google Scholar 

  • Broecker WS, Takahashi T (1978) Relationship between Lysocline depth and Insitu carbonate ion concentration. Deep-Sea Res 25:65–95

    CAS  Google Scholar 

  • Broecker WS, Peng T-H, Beng Z (1982) Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, pp 58–93

    Google Scholar 

  • Bruckner A, Rowlands G, Riegl B, Purkis S, Williams A, Renaud P (2012) Khaled bin Sultan Living Oceans Foundation Atlas of Saudi Arabian Red Sea marine habitats. Panoramic Press, Phoenix, p 262

    Google Scholar 

  • Cacchione DA, Drake DE (1982) Measurements of storm-generated bottom stresses on the continental shelf. J Geophys Res 87:1952–1960

    Article  Google Scholar 

  • Callaghan DP, Nielsen P, Cartwright N, Gourlay MR, Baldock TE (2006) Atoll lagoon flushing forced by waves. Coast Eng 53:691–704. https://doi.org/10.1016/j.coastaleng.2006.02.006

    Article  Google Scholar 

  • Cember RP (1988) On the sources, formation, and circulation of Red-Sea deep-water. J Geophys Res Oceans 93:8175–8191

    Article  CAS  Google Scholar 

  • Chang GC, Dickey TD, Williams AJ III (2001) Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense. J Geophys Res 106:9517–9531

    Article  Google Scholar 

  • Chen C et al (2014) Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the Central Red Sea. J Geophys Res Oceans 119:1445–1464. https://doi.org/10.1002/2013JC009351

    Article  Google Scholar 

  • Churchill JH, Wirick CW, Flagg CN, Pietrafesa LJ (1994) Sediment resuspension over the continental shelf east of the Delmarva Peninsula. Deep-Sea Res Part II 41(2/3):341–363

    Article  Google Scholar 

  • Churchill JH, Bower AS, McCorkle DC, Abualnaja Y (2014a) The transport of nutrient-rich Indian Ocean water through the Red Sea and into coastal reef systems. J Mar Res 72:165–181. https://doi.org/10.1357/002224014814901994

    Article  Google Scholar 

  • Churchill JH, Lentz SJ, Farrar JT, Abualnaja Y (2014b) Properties of Red Sea coastal currents. Cont Shelf Res 78:51–61. https://doi.org/10.1016/j.csr.2014.01.025

    Article  Google Scholar 

  • Clifford M, Horton C, Schmitz J, Kantha LH (1997) An oceanographic nowcast/forecast system for the Red Sea. J Geophys Res 102(25):101–25,122

    Google Scholar 

  • Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53

    Article  Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538

    Article  Google Scholar 

  • Davis KA, Lentz SJ, Pineda J, Farrar JT, Starczak VR, Churchill JH (2011) Observations of the thermal environment on Red Sea platform reefs: a heat budget analysis. Coral Reefs 30:25–36. https://doi.org/10.1007/s00338-011-0740-8

    Article  Google Scholar 

  • Davis SR, Pratt LJ, Jiang H (2015) The Tokar gap jet: regional circulation, diurnal variability, and moisture transport based on numerical simulations. J Clim 28:5885–5907

    Article  Google Scholar 

  • De Moel H, Ganssen G, Peeters F, Jung S, Kroon D, Brummer G, Zeebe R (2009) Planktonic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification. Biogeosciences 6:1917–1925

    Article  Google Scholar 

  • Defant A (1961) Physical oceanography, volume 2. Pergamon Press, Oxford, p 598

    Google Scholar 

  • DeVantier L, Tourak E, Al-Shaikh K, De’ath G (2000) Coral communities of the central-northern Saudi Arabian Red Sea. Fauna of Arabia 18:23–66

    Google Scholar 

  • Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci U S A 106:12235–12240

    Article  Google Scholar 

  • Dullo WC (2005) Coral growth and reef growth: a brief review. Facies 51:37–52

    Article  Google Scholar 

  • Dullo WC, Montaggioni L (1998) Modern Red Sea coral reefs: a review of their morphologies and zonation. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics in rift basins Red Sea: Gulf of Aden. Springer, Dordrecht, pp 583–594

    Chapter  Google Scholar 

  • El-Asmar HM (1997) Quaternary isotope stratigraphy and paleoclimate of coral reef terraces, Gulf of Aqaba, South Sinai, Egypt. Quat Sci Rev 16:911–924

    Article  Google Scholar 

  • El-Shenawy MA, El-Samra ML (1996) Nitrogen fixation in the northern Red Sea. J. K.A.U Mar. Sci., 7, Special issue, Symposuim on Red Sea marine environment, pp 33–39

    Google Scholar 

  • Eladawy A, Nadaoka K, Negm A, Abdel-Fattah S, Hanafy M, Shaltout M (2017) Characterization of the northern Red Sea’s oceanic features with remote sensing data and outputs from a global circulation model. Oceanologia 59:213–237. https://doi.org/10.1016/j.oceano.2017.01.002

    Article  Google Scholar 

  • Eltaib EBA (2010) Tides analysis in the Red Sea in Port Sudan and Gizan. M.S. thesis, niversity of Bergen, Geophysical Institute, 61 pp

    Google Scholar 

  • Emerson S, Hedges J (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press

    Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, pp 151–176

    Google Scholar 

  • Falkowski PG, Ziemann D, Kolber Z, Bienfang PK (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature 352:55–58

    Article  Google Scholar 

  • Felis T, Pätzold J, Loya Y, Fine M, Nawar AH, Wefer G (2000) A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanography 15:679–694

    Google Scholar 

  • Fricke HW, Knauer B (1986) Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone (a quantitative assessment study by submersible). Oecologia 71:29–37

    Article  CAS  Google Scholar 

  • Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:371–381

    Article  CAS  Google Scholar 

  • Gattuso JP, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Chang 18:37–46

    Article  Google Scholar 

  • Genin A, Lazar B, Brenner S (1995) Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377:507–510

    Article  CAS  Google Scholar 

  • Grant WD, Madsen OS (1986) The continental-shelf bottom boundary-layer. Annu Rev Fluid Mech 18:265–305

    Article  Google Scholar 

  • Grant WD, Williams AJ, Glenn SM (1984) Bottom stress estimates and their prediction on the Northern California continental shelf during CODE-1. The importance of wave-current interaction. J Phys Oceanogr 14:506–527

    Article  Google Scholar 

  • Grasshoff K (1969) Zur Chemie des Roten Meeres und des Inneren Golfs von Aden nach Beobachtungen von FS “Meteor” während der Indischen Ozean Expedition 1964/65. Meteor Forschungsergebn, Reihe A, 6

    Google Scholar 

  • Grover R, Ferrier-Pagès C, Maguer J-F, Ezzat L, Fine M (2014) Nitrogen fixation in the mucus of Red Sea corals. J Exp Biol 217:3962–3963. https://doi.org/10.1242/jeb.111591

    Article  Google Scholar 

  • Gvirtzman G (1994) Fluctuations of sea level during the past 400,000 years: the record of Sinai, Egypt (northern Red Sea). Coral Reefs 13:203–214

    Article  Google Scholar 

  • Gvirtzman G, Kronfeld J, Buchbinder B (1992) Dated coral reefs of southern Sinai (Red Sea) and their implication to late Quaternary Sea levels. Mar Geol 108:29–37

    Article  CAS  Google Scholar 

  • Harriott VJ, Fisk DA (1987) A comparison of settlement plate types for experiments on the recruitment of scleractinian corals. Mar Ecol Prog Ser 37:201–208

    Article  Google Scholar 

  • Hearn CJ (2010) Hydrodynamics of coral reefs. In: Hopley D (ed) Encyclopedia of modern coral reefs. Springer, Berlin, pp 563–573

    Google Scholar 

  • Hench JL, Leichter JJ, Monismith SG (2008) Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol Oceanogr 53:2681–2694. https://doi.org/10.4319/lo.2008.53.6.2681

    Article  Google Scholar 

  • Hickey B, Goudie AS (2007) The use of TOMS and MODIS to identify dust storm source areas: the Tokar delta (Sudan) and the Seistan basin (South West Asia). In: Goudie AS, Kalvoda J (eds) Geomorphological variations. P3K, Prague, pp 37–57

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Jarosz E, Murray SP, Inoue M (2005) Observations on the characteristics of tides in the Bab el Mandab Strait. J Geophys Res 110:C03015. https://doi.org/10.1029/2004JC002299.

    Article  Google Scholar 

  • Jiang H, Farrar JT, Beardsley RC, Chen R, Chen C (2009) Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys Res Lett 36:L19605

    Article  Google Scholar 

  • Joffe S, Garfunkel Z (1987) Plate kinematics of the circum Red Sea- a re-evaluation. Tectonophysics 141:5–22

    Article  Google Scholar 

  • Kalenderski S, Stenchikov G, Zhao C (2013) Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea. Atmos Chem Phys 13:1999–2014

    Article  CAS  Google Scholar 

  • Kalenderski S, Stenchikov G (2016) High-resolution regional modeling of summertime transport and impact of African dust over the Red Sea and Arabian Peninsula. J Geophys Res Atmos 121:6435–6458. https://doi.org/10.1002/2015JD024480

    Article  Google Scholar 

  • Khalil SM, McClay KR (2009) Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt. Mar Petrol Geol 26:1018–1034

    Article  Google Scholar 

  • Khimitsa VA, Bibik VA (1979) Seasonal exchange in dissolved oxygen and phosphate between the Red Sea and the Gulf of Aden. Oceanol 9:544–546

    Google Scholar 

  • Kiflawi M, Belmaker J, Brokovich E, Einbinder S, Holzman R (2006) The determinants of species richness of a relatively young coral-reef ichthyofauna. J Biogeogr 33:1289–1294

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Klinker J, Reiss Z, Kropach C, Levanon I, Harpaz H, Halicz E, Asaf G (1976) Observations on circulation pattern in Gulf of Elat (Aqaba), Red-Sea. Isr J Earth Sci 25:85–103

    Google Scholar 

  • Krumgalz B, Erez J, Chen C (1990) Anthropogenic CO2 penetration in the northern Red Sea and in the Gulf of Elat (Aqaba). Oceanol Acta 13:283–290

    CAS  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  CAS  Google Scholar 

  • Langodan S, Cavaleri L, Viswanadhapalli Y, Hoteit I (2014) The Red Sea: a natural laboratory for wind and wave modeling. J Phys Oceanogr 44:3139–3159

    Article  Google Scholar 

  • Langodan S, Viswanadhapalli Y, Dasari HP, Knio O, Hoteit I (2016) A high resolution assessment of wind and wave energy potentials in the Red Sea. Appl Energy 181:244–255

    Article  Google Scholar 

  • Langodan S, Cavaleri L, Viswanadhapalli Y, Pomaro A, Bertotti L, Hoteit I (2017a) The climatology of the Red Sea – part 1: the wind. Int J Climatol 37:4509–4517. https://doi.org/10.1002/joc.5103

    Article  Google Scholar 

  • Langodan S, Cavaleri L, Pomaro A, Viswanadhapalli Y, Bertotti L, Hoteit I (2017b) The climatology of the Red Sea - part 2: the waves. Int J Climatol 37:4518–4528. https://doi.org/10.1002/joc.5101

    Article  Google Scholar 

  • Lazar B, Erez J, Silverman J, Rivlin T, Rivlin A, Dray M, Meeder E, Iluz D (2008) Recent environmental changes in the chemical-biological oceanography of the Gulf of Aqaba (Eilat). In: Por FD (ed) Aqaba-Eilat, the improbable gulf. Environment, biodiversity and preservation. Magnes Press, Jerusalem

    Google Scholar 

  • Legge H-L, Mutterlose J, Arz HW, Pätzold J (2008) Nannoplankton successions in the northern Red Sea during the last glaciation (60–14.5 ka BP): reactions to climate change. Earth Planet Sci Lett 270:271–279

    Article  CAS  Google Scholar 

  • Lentz SJ, Churchill JH, Davis KA, Farrar JT (2016a) Surface gravity wave transformation across a platform coral reef in the Red Sea. J Geophys Res Oceans 121:693–705. https://doi.org/10.1002/2015JC011142

    Article  Google Scholar 

  • Lentz SJ, Churchill JH, Davis KA, Farrar JT, Pineda J, Starczak V (2016b) The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea. J Geophys Res Oceans 121. https://doi.org/10.1002/2015JC011141

  • Lentz SJ, Davis KA, Churchill JH, DeCarlo TM (2017) Coral reef drag coefficients – water depth dependence. J Phys Oceanogr 47:1061–1075

    Article  Google Scholar 

  • Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009) Wave-driven circulation of a coastal reef–lagoon system. J Phys Oceanogr 39(4):873–893. https://doi.org/10.1175/2008JPO3958.1

    Article  Google Scholar 

  • Luz B, Heller-Kallai L, Almogi-Labin A (1984) Carbonate mineralogy of Late Pleistocene sediments from the northern Red Sea. Isr J Earth-Sci 33:157–166

    CAS  Google Scholar 

  • Lyne VD, Butman B, Grant WD (1990) Sediment movement along the U.S. east coast continental shelf—I. Estimates of bottom stress using the Grant-Madsen model and near-bottom wave and current measurements. Cont Shelf Res 10:397–428

    Article  Google Scholar 

  • Madah F, Mayerle R, Bruss G, Bento J (2015) Characteristics of tides in the Red Sea region, a numerical model study. Open J Mar Sci 5:193–209

    Article  Google Scholar 

  • Madsen OS, Wright LD, Boon JD, Chisholm TA (1993) Wind stress, bed roughness and sediment suspension on the inner shelf during an extreme storm event. Cont Shelf Res 13:1303–1324

    Article  Google Scholar 

  • Maillard C, Soliman G (1986) Hydrography of the Red Sea and exchanges with the Indian Ocean in summer. Oceanol Acta 9:249–269

    Google Scholar 

  • Makovsky Y, Wunch A, Ariely R, Shaked Y, Rivlin A, Shemesh A, Avraham ZB, Agnon A (2008) Quaternary transform kinematics constrained by sequence stratigraphy and submerged coastline features: the Gulf of Aqaba. Earth Planet Sci Lett 271:109–122

    Article  CAS  Google Scholar 

  • Manasrah R, Hasanean HM, Al-Rousan S (2009) Spatial and seasonal variations of sea level in the Red Sea, 1958-2001. Ocean Sci J 44:145–159

    Article  Google Scholar 

  • Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 213:4084–4091. https://doi.org/10.1242/jeb.039891

    Article  CAS  Google Scholar 

  • McDonald CB, Koseff JR, Monismith SG (2006) Effects of the depth to coral height ratio on drag coefficients for unidirectional flow over coral. Limnol Oceanogr 51(3):1294–1301

    Article  Google Scholar 

  • McGillicuddy DJ et al (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316:1021–1026

    Article  CAS  Google Scholar 

  • Millero FJ, Lee K, Roche M (1998) Distribution of alkalinity in the surface waters of the major oceans. Mar Chem 60:111–130

    Article  CAS  Google Scholar 

  • Monismith SG (2007) Hydrodynamics of coral reefs. Annu Rev Fluid Mech 39:37–55. https://doi.org/10.1146/annurev.fluid.38.050304.092125

    Article  Google Scholar 

  • Monismith SG, Herdman LMM, Ahmerkamp S, Hench JL (2013) Wave transformation and wave-driven flow across a steep coral reef. J Phys Oceanogr 43:1356–1379

    Article  Google Scholar 

  • Montaggioni, L (2000) Postglacial reef growth. Comptes endus De L Academie Des Sciences Serie II Fascicule A-Sciences De La Terre Et Des Planetes, 331, 319–330

    Google Scholar 

  • Montaggioni L (2005) History of indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci Rev 71:1–75

    Article  Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Annu Rev 8:73–202

    Google Scholar 

  • Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, Omori M (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154

    Article  Google Scholar 

  • Moy AD, Howard WR, Bray SG, Trull TW (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat Geosci 2:276–280

    Article  CAS  Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure. Am J Sci 283:780–799

    Article  CAS  Google Scholar 

  • Murray SP, Johns W (1997) Direct observations of seasonal exchange through the Bab el Mandeb Strait. Geophys Res Lett 24:2557–2560

    Article  Google Scholar 

  • Naqvi SWA, Hansen HP, Kureishy TW (1986) Nutrient uptake and regeneration ratios in the Red Sea with reference to the nutrient budgets. Oceanol Acta 9:271–275

    CAS  Google Scholar 

  • Neo ML, Todd PA, Teo SL-M, Chou LM (2009) Can artificial substrates enriched with crustose coralline algae enhance larval settlement and recruitment in the fluted giant clam (Tridacna squamosa)? Hydrobiologia 625:83–90

    Article  Google Scholar 

  • Neumann AC, McGill DA (1962) Circulation of the Red Sea in early summer. Deep-Sea Res 8:223–285

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. https://doi.org/10.1038/nature04095

    Article  CAS  Google Scholar 

  • Oschlies A, Garçon V (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394:266–269

    Article  Google Scholar 

  • Osipov S, Stenchikov G (2018) Simulating the regional impact of dust on the Middle East climate and the Red Sea. J Geophys Res Oceans 123:1023–1047. https://doi.org/. https://doi.org/10.1002/2017JC013335

    Article  Google Scholar 

  • Papadopoulos VP, Abualnaja Y, Josey SA, Bower A, Raitsos DE, Kontoyiannis H, Hoteit I (2013) Atmospheric forcing of the winter air-sea heat fluxes over the Northern Red Sea. J Clim 26:1685–1701

    Article  Google Scholar 

  • Papaud A, Poisson A (1986) Distribution of dissolved CO2 in the Red-Sea and correlations with other geochemical tracers. J Mar Res 44:385–402

    Article  CAS  Google Scholar 

  • Patzert WC (1974) Wind-induced reversal in Red Sea circulation. Deep-Sea Res 21:109–121

    Google Scholar 

  • Phillips OM (1966) On turbulent convection currents and the circulation of the Red Sea. Deep Sea Res 13:1149–1160

    Google Scholar 

  • Pierrot D, Lewis E, Wallace D (2006) CO2sys DOS program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon dioxide information analysis center, oak Ridge National Laboratory. US Department of Energy, Oak Ridge

    Google Scholar 

  • Pineda J, Starczak V, Tarrant A, Blythe J, Davis K, Farrar T, Beruman M, da Silva JCB (2013) Two spatial scales in a bleaching event: corals from the mildest and the most extreme thermal environments escape mortality. Limnol Oceanogr 58:1531–1545. https://doi.org/10.4319/lo.2013.58.5.153

    Article  Google Scholar 

  • Plahn O, Baschek B, Badewien TH, Walter M, Rhein M (2002) Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea. J Geophys Res Oceans 107:22-1–22-18

    Article  Google Scholar 

  • Poisson A, Morcos S, Souvermezoglou E, Papaud A, Ivanoff A (1984) Some aspects of biogeochemical cycles in the Red Sea with special references to new observations made in summer 1982. Deep-Sea Res 31:707–718

    Article  CAS  Google Scholar 

  • Prakash PJ, Stenchikov G, Kalenderski S, Osipov S, Bangalath H (2015) The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos Chem Phys 15:199–222

    Article  CAS  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:2–1–2-31

    Article  Google Scholar 

  • Quadfasel D, Baunder H (1993) Gyre-scale circulation cells in the Red Sea. Oceanol Acta 16:221–229

    Google Scholar 

  • Qurban MA, Balala AC, Kumar S, Bhavya PS, Wafar M (2014) Primary production in the Northern Red Sea. J Mar Syst 132:75–82

    Article  Google Scholar 

  • Raitsos DE, Hoteit I, Prihartato PK, Chronis T, Triantafyllou G, Abualnaja Y (2011) Abrupt warming of the Red Sea. Geophys Res Lett 38:L14601

    Article  Google Scholar 

  • Raitsos DE, Pradhan Y, Brewin RJW, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8:e64909. https://doi.org/10.1371/journal.pone.0064909

    Article  CAS  Google Scholar 

  • Ralston DK, Jiang H, Farrar JT (2013) Waves in the Red Sea: response to monsoonal and mountain gap winds. Cont Shelf Res 65:1–13

    Article  Google Scholar 

  • Roder C, Berumen ML, Bouwmeester J, Papathanassiou E, Al-Suwailem A, Voolstra CR (2013) First biological measurements of deep-sea corals from the Red Sea. Sci Rep. https://doi.org/10.1038/srep02802

  • Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464

    Article  CAS  Google Scholar 

  • Shaked Y, Agnon A, Lazar B, Marco S, Avner U, Stein M (2004) Large earthquakes kill coral reefs at the north-west gulf of Aqaba. Terra Nova 16:133–138

    Article  Google Scholar 

  • Shaked Y, Lazar B, Marco S, Stein M, Tchernov D, Agnon A (2005) Evolution of fringing reefs: space and time constraints from the Guilf of Aqaba. Coral Reefs 24:165–172

    Article  Google Scholar 

  • Shanas PR, Aboobacker VM, Albarakati AMA, Zubier KM (2017a) Superimposed wind-waves in the Red Sea. Ocean Eng 138:9–22. https://doi.org/10.1016/j.oceaneng.2017.04.020

    Article  Google Scholar 

  • Shanas PR, Aboobacker VM, Albarakati AMA, Zubier KM (2017b) Climate driven variability of wind-waves in the Red Sea. Ocean Model 119:105–117. https://doi.org/10.1016/j.ocemod.2017.10.001

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  CAS  Google Scholar 

  • Silverman J, Lazar B, Erez J (2007) Community metabolism of a coral reef exposed to naturally varying dissolved inorganic nutrient loads. Biogeochemistry 84:67–82

    Article  CAS  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606–L05611

    Article  CAS  Google Scholar 

  • Silverman J, Lazar B, Erez J (2012) Carbon turnover rates in the one tree island reef: a 40-year perspective. Journal of geophysical research. Biogeosciences 117:G03023–G03039

    Google Scholar 

  • Sofianos S, Johns W (2001) Wind induced sea level variability in the Red Sea. Geophys Res Lett 28:3175–3178

    Article  Google Scholar 

  • Sofianos SS, Johns WE (2002) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean. J Geophys Res 107:3196. https://doi.org/10.1029/2001JC001184

  • Sofianos SS, Johns WE (2003) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation: 2. Three dimensional circulation in the Red Sea. J Geophys Res 108(C3):3066. https://doi.org/10.1029/2001JC001185

    Article  Google Scholar 

  • Sofianos SS, Johns WE (2007) Observations of the summer Red Sea circulation. J Geophys Res 112:C06025. https://doi.org/10.1029/2006JC003886.

    Article  Google Scholar 

  • Sofianos SS, Johns WE, Murray SP (2002) Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep Sea Res Part II 49:1323–1340

    Article  Google Scholar 

  • Souvermezoglou E, Metzl N, Poisson A (1989) Red Sea budgets of salinity, nutrients, and carbon calculated in the strait of Bab-el-Mandab during the summer and winter season. J Mar Res 47:441–456

    Article  CAS  Google Scholar 

  • Stambler N (2005) Bio-optical properties of the northern Red Sea and the Gulf of Eilat Aqaba – Winter 1999. J Sea Res 54:186–203

    Article  Google Scholar 

  • Stambler N (2006) Light and picophytoplankton in the Gulf of Eilat (Aqaba). J Geophys Res 111:C11009

    Article  Google Scholar 

  • Steiner Z, Erez J, Shemesh A, Yam R, Katz A, Lazar B (2014) Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean. Proc Natl Acad Sci U S A 111:16303–16308

    Article  CAS  Google Scholar 

  • Sultan SAR, Ahmad F, Elghribi NM (1995a) Sea level variability in the Central Red Sea. Oceanol Acta 18(6):607–615

    Google Scholar 

  • Sultan SAR, Ahmad F, El-Hassan A (1995b) Seasonal variations of the sea level in the central part of the Red Sea. Estuar Coast Shelf Sci 40:1–8

    Article  Google Scholar 

  • Sultan SAR, Ahmad F, Nassar D (1996) Relative contribution of external sources of mean sea-level variations at Port Sudan, Red Sea. Estuar Coast Shelf Sci 42:19–30

    Article  Google Scholar 

  • Symonds G, Black KP, Young IR (1995) Wave-driven flow over shallow reefs. J Geophys Res 100(C2):2639–2648. https://doi.org/10.1029/94JC02736

    Article  Google Scholar 

  • Talley LD (2013) Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE): volume 4: Indian Ocean. International WOCE Project Office

    Google Scholar 

  • Tragou E, Garrett C (1997) The shallow thermohaline circulation of the Red Sea. Deep-Sea Res Part I 44:1355–1376

    Article  Google Scholar 

  • Tragou E, Garrett C, Outerbridge R, Gilman G (1999) The heat and freshwater budgets of the Red Sea. J Phys Oceanogr 29:2504–2522

    Article  Google Scholar 

  • Triantafyllou G, Yao F, Petihakis G, Tsiaras KP, Raitsos DE, Hoteit I (2014) Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J Geophys Res Oceans 119:1791–1811. https://doi.org/10.1002/2013JC009641

    Article  Google Scholar 

  • Vercelli F (1925) Richerche di oceanografia fisica eseguite della R.N. AMMIRAGILIO MAGNAGHI (1923 – 24), part I, Correnti e maree. Ann Idrog 11:1–188

    Google Scholar 

  • Vetter O, Becker JM, Merrifield MA, Pequignet A-C, Aucan J, Boc SJ, Pollock CE (2010) Wave setup over a Pacific Island fringing reef. J Geophys Res 115:C12066. https://doi.org/10.1029/2010JC006455

    Article  Google Scholar 

  • Viswanadhapalli Y, Dasari HP, Langodan S, Challa VS, Hoteit I (2017) Climatic features of the Red Sea from a regional assimilative model. Int J Climatol 37:2563–2581. https://doi.org/10.1002/joc.4865

    Article  Google Scholar 

  • Wahr J, Smeed DA, Leuliette E, Swenson S (2014) Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations. J Geophys Res Oceans 119:5091–5104. https://doi.org/10.1002/2014JC010161

    Article  Google Scholar 

  • Weikert H (1987) Plankton and the pelagic environment. In: Edwards AJ, Head SM (eds) Key environments: Red Sea. Pergamon, Oxford, pp 90–111

    Google Scholar 

  • Weiss R, Broecker W, Craig H, Spencer D (1983) Hydrographic data 1977–1978 GEOSECS Indian Ocean expedition, vol 5. National Science Foundation, Washington, DC

    Google Scholar 

  • Winters G, Beer S, Zvi BB, Brickner I, Loya Y (2009) Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar Ecol Prog Ser 384:107–119

    Article  Google Scholar 

  • Wurgaft E, Steiner Z, Luz B, Lazar B (2016) Evidence for inorganic precipitation of CaCO3 on suspended solids in the open water of the Red Sea. Mar Chem 186:145–155

    Article  CAS  Google Scholar 

  • Yao F, Hoteit I, Pratt LJ, Bower AS, Zhai P, Kohl A, Gopalakrishnan G (2014a) Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res Oceans 119. https://doi.org/10.1002/2013JC009004

  • Yao F, Hoteit I, Pratt LJ, Bower AS, Kohl A, Gopalakrishnan G, Rivas D (2014b) Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J Geophys Res Oceans 119. https://doi.org/10.1002/2013JC009331

  • Yehudai M, Lazar B, Bar N, Kiro Y, Agnon A, Shaked Y, Stein M (2017) U–Th dating of calcite corals from the Gulf of Aqaba. Geochim Cosmochim Acta 198:285–298. https://doi.org/10.1016/j.gca.2016.11.005

    Article  CAS  Google Scholar 

  • Zarokanellos ND, Kurten B, Churchill JH, Roder C, Voolstra CR, Abualnaja Y, Jones BH (2017a) Physical mechanisms routing nutrients in the central Red Sea. J Geophys Res Oceans 122:9032–9046. https://doi.org/10.1002/2017JC013017

    Article  Google Scholar 

  • Zarokanellos ND, Papadopoulos VP, Sofianos SS, Jones BH (2017b) Physical and biological characteristics of the winter-summer transition in the central Red Sea. J Geophys Res Oceans 122:6355–6370. https://doi.org/10.1002/2017JC012882

    Article  Google Scholar 

  • Zhai P, Bower AS (2013) The response of the Red Sea to a strong wind jet near the Tokar gap in summer. J Geophys Res Oceans 118:422–434. https://doi.org/10.1029/2012JC008444

    Article  Google Scholar 

  • Zhan P, Subramanian AC, Yao F, Hoteit I (2014) Eddies in the Red Sea: a statistical and dynamical study. J Geophys Res Oceans 119:3909–3925. https://doi.org/10.1002/2013JC009563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Churchill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Churchill, J., Davis, K., Wurgaft, E., Shaked, Y. (2019). Environmental Setting for Reef Building in the Red Sea. In: Voolstra, C., Berumen, M. (eds) Coral Reefs of the Red Sea. Coral Reefs of the World, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-05802-9_2

Download citation

Publish with us

Policies and ethics