Thermal Stability and Thermodynamics of the Ag2ZnGeS4 Compound

  • Mykola MorozEmail author
  • Fiseha Tesfaye
  • Pavlo Demchenko
  • Myroslava Prokhorenko
  • Daniel Lindberg
  • Oleksandr Reshetnyak
  • Leena Hupa
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Phase equilibria in the ZnS–Ag2GeS3–Ge–GeS2 part of the Ag–Zn–Ge–S system were investigated using differential thermal analysis, X-ray diffraction, and EMF methods. The data was used to model Ag2GeS3–ZnS polythermal section. Further, the mechanism of formation and thermal stability of the Ag2ZnGeS4 compound were established. The results suggest the presence of another quaternary phase Ag4ZnGe2S7 in the temperature range of 695–853 K. The determined phase relations were used to express the chemical reactions. Based on the electromotive force versus temperature measurements, experimental thermodynamic data of the Ag2ZnGeS4 quaternary phase were derived for the first time. The calculated Gibbs energy, enthalpy and entropy values of the Ag2ZnGeS4 compound in both phase regions are consistent, which indicates that Ag2ZnGeS4 has stoichiometric composition.


Chalcogenide semiconductors Phase equilibria Thermodynamic properties EMF method Gibbs energy 



The authors are grateful to the Academy of Finland for financial support. This work was made under the project “Thermodynamic investigation of complex inorganic material systems for improved renewable energy and metals production processes” (Decision number 311537) as part of the activities of the Johan Gadolin Process Chemistry Centre at Åbo Akademi University. In addition, funding from the Academy of Finland project “Behavior and properties of molten ash in biomass and waste combustion” (Decision number 266384) for M. Moroz and D. Lindberg is greatly appreciated.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Tsuji I, Shimodaira Y, Kato H, Kobayashi H, Kudo A (2010) Novel Stannite-type complex sulfide photocatalysts A2I-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light irradiation. Chem Mater 22:1402–1409CrossRefGoogle Scholar
  2. 2.
    Parasyuk OV, Fedorchuk AO, Kogut YM, Piskach LV, Olekseyuk ID (2010) The Ag2S–ZnS–GeS2 system: phase diagram, glass-formation region and crystal structure of Ag2ZnGeS4. J Alloy Compd 500:26–29CrossRefGoogle Scholar
  3. 3.
    Himmrich M, Haeuseler H (1991) Far infrared studies on stannite and wurtzstannite type compounds. Spectrochim Acta Part A 47:933–942CrossRefGoogle Scholar
  4. 4.
    Chen S, Gong XG, Walsh A, Wei SH (2009) Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys Rev B 79:165211-10Google Scholar
  5. 5.
    Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131:11672–11673CrossRefGoogle Scholar
  6. 6.
    Fontané X, Izquierdo-Roca V, Saucedo E, Schorr S, Yukhymchuk VO, Valakh MY, Pérez-Rodríguez A, Morante JR (2012) Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe, Zn)SnS4. J Alloy Compd 539:190–194CrossRefGoogle Scholar
  7. 7.
    Fan F-J, Wu L, Yu S-H (2014) Energetic I-III-VI2 and I2-II-IV-VI4 nanocrystals: Synthesis, photovoltaic and thermoelectric applications. Energy Environ Sci 7:190–208CrossRefGoogle Scholar
  8. 8.
    Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690CrossRefGoogle Scholar
  9. 9.
    Davydyuk GE, Myronchuk GL, Kityk IV, Danyl’chuk SP, Bozhko VV, Parasyuk OV (2011) Ag2CdSnS4 single crystals as promising materials for optoelectronic. Opt Mater 33:1302–1306CrossRefGoogle Scholar
  10. 10.
    Parasyuk OV, Piskach LV, Olekseyuk ID, Pekhnyo VI (2005) The quasi-ternary system Ag2S-CdS-GeS2 and the crystal structure of Ag2CdGeS4. J Alloy Compd 397:95–98CrossRefGoogle Scholar
  11. 11.
    Parasyuk OV, Gulay LD, Piskach LV, Gagalovska OP (2002) The Ag2S–HgS–GeS2 system at 670 K and the crystal structure of the Ag2HgGeS4 compound. J Alloy Compd 336:213–217CrossRefGoogle Scholar
  12. 12.
    Piskach LV, Parasyuk OV, Olekseyuk ID, Romanyuk YE, Volkov SV, Pekhnyo VI (2006) Interaction of argyrodite family compounds with the chalcogenides of II-b elements. J Alloy Compd 421:98–104CrossRefGoogle Scholar
  13. 13.
    Olekseyuk ID, Kogut YuM, Yurchenko OM, Parasyuk OV, Volkov SV, Pekhnyo VI (2009) Glass formation and optical properties of the glasses in the Ag2S–HgS–GeS2 system. Chem Met Alloy 2:49–54Google Scholar
  14. 14.
    Ipser H, Mikula A, Katayama I (2010) Overview: the emf method as a source of experimental thermodynamic data. Calphad 34:271–278CrossRefGoogle Scholar
  15. 15.
    Kroupa A (2013) Modeling of phase diagrams and thermodynamic properties using Calphad method—development of thermodynamic databases. Comput Mater Sci 66:3–13CrossRefGoogle Scholar
  16. 16.
    Robinel E, Carette B, Ribes M (1983) Silver sulfide based glasses (I): glass forming regions, structure and ionic conduction of glasses in GeS2–Ag2S and GeS2–Ag2S–AgI systems. J Non-Cryst Solids 57:49–58CrossRefGoogle Scholar
  17. 17.
    Moroz M, Tesfaye F, Demchenko P, Prokhorenko M, Lindberg D, Reshetnyak O, Hupa L (2018) Determination of the thermodynamic properties of the Ag2CdSn3S8 and Ag2CdSnS4 phases in the Ag–Cd–Sn–S system by the solid-state electrochemical cell method. J Chem Thermodyn 118:255–262CrossRefGoogle Scholar
  18. 18.
    Mikolaichuk AG, Moroz NV, Demchenko PY, Akselrud LG, Gladyshevskii RE (2010) Phase relations in the Ag8SnS6-Ag2SnS3-AgBr system and crystal structure of Ag6SnS4Br 2. Inorg Mater 46:590–597CrossRefGoogle Scholar
  19. 19.
    Preston-Thomas H (1990) The international temperature scale of 1990 (ITS-90). Metrologia 27:3–10CrossRefGoogle Scholar
  20. 20.
    Diffractom. Stoe WinXPOW, Version 3.03 (2010) Stoe Cie GmbH DarmstadtGoogle Scholar
  21. 21.
    Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303CrossRefGoogle Scholar
  22. 22.
    Villars P, Cenzual K (2014) Pearson’s crystal data: crystal structure database for inorganic compounds. Release 2014/15. ASM International, Materials ParkGoogle Scholar
  23. 23.
    Babanly MB, Yusibov YA, Babanly NB (2011) The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides. InTech 57–78Google Scholar
  24. 24.
    Osadchii EG, Echmaeva EA (2007) The system Ag-Au-Se: phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique. Am Mineral 92:640–647CrossRefGoogle Scholar
  25. 25.
    Moroz MV, Prokhorenko MV, Prokhorenko SV, Determination of thermodynamic properties of Ag3SBr superionic phase using EMF technique. Russ J Electrochem 51:886–889CrossRefGoogle Scholar
  26. 26.
    Moroz MV, Prokhorenko MV, Reshetnyak OV, Demchenko PYu (2017) Electrochemical determination of thermodynamic properties of saturated solid solutions of Hg2GeSe3, Hg2GeSe4, Ag2Hg3GeSe6, and Ag1.4Hg1.3GeSe6 compounds in the Ag–Hg–Ge–Se system. J Solid State Electrochem 21:833–837CrossRefGoogle Scholar
  27. 27.
    Babanly MB, Mashadieva LF, Aliev ZS, Shevelkov AV, Yusibov YA (2012) Phase diagram and thermodynamic properties of compounds of the AgI-TlI-I system. J Alloy Compd 524:38–45CrossRefGoogle Scholar
  28. 28.
    Tesfaye F, Taskinen P (2014) Electrochemical study of the thermodynamic properties of matildite (β-AgBiS2) in different temperature and compositional ranges. J Solid State Electrochem 18:1683–1694CrossRefGoogle Scholar
  29. 29.
    Moroz M, Tesfaye F, Demchenko P, Prokhorenko M, Lindberg D, Reshetnyak O, Hupa L (2018) Phase equilibria and thermodynamics of selected compounds in the Ag–Fe–Sn–S system. J Electron Mater 47:5433–5442CrossRefGoogle Scholar
  30. 30.
    Barin I (1995) Thermochemical data of pure substance. VCH, WeinheimCrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mykola Moroz
    • 1
    Email author
  • Fiseha Tesfaye
    • 1
  • Pavlo Demchenko
    • 2
  • Myroslava Prokhorenko
    • 3
  • Daniel Lindberg
    • 4
  • Oleksandr Reshetnyak
    • 5
  • Leena Hupa
    • 1
  1. 1.Laboratory of Inorganic ChemistryJohan Gadolin Process Chemistry Centre, Åbo Akademi UniversityTurkuFinland
  2. 2.Department of Inorganic ChemistryIvan Franko National University of LvivLvivUkraine
  3. 3.Department of Cartography and Geospatial ModelingLviv Polytechnic National UniversityLvivUkraine
  4. 4.School of Chemical EngineeringAalto UniversityEspooFinland
  5. 5.Department of Physical and Colloid ChemistryIvan Franko National University of LvivLvivUkraine

Personalised recommendations