VIREO @ Video Browser Showdown 2019

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11296)


In this paper, the VIREO team video retrieval tool is described in details. As learned from Video Browser Showdown (VBS) 2018, the visualization of video frames is a critical need to improve the browsing effectiveness. Based on this observation, a hierarchical structure that represents the video frame clusters has been built automatically using k-means and self-organizing-map and used for visualization. Also, the relevance feedback module which relies on real-time support-vector-machine classification becomes unfeasible with the large dataset provided in VBS 2019 and has been replaced by a browsing module with pre-calculated nearest neighbors. The preliminary user study results on IACC.3 dataset show that these modules are able to improve the retrieval accuracy and efficiency in real-time video search system.


Video visualization Video retrieval Video browser showdown 



The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong SAR, China (Reference No.: CityU 11250716), and a grant from the PROCORE-France/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the Consulate General of France in Hong Kong (Reference No.: F-CityU104/17).


  1. 1.
    Cobârzan, C., Schoeffmann, K., Bailer, W., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl. 76, 5539–5571 (2017)CrossRefGoogle Scholar
  2. 2.
    Lu, Y.-J., Nguyen, P.A., Zhang, H., Ngo, C.-W.: Concept-based interactive search system. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 463–468. Springer, Cham (2017). Scholar
  3. 3.
    Nguyen, P.A., Lu, Y.-J., Zhang, H., Ngo, C.-W.: Enhanced VIREO KIS at VBS 2018. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 407–412. Springer, Cham (2018). Scholar
  4. 4.
    Del Fabro, M., Münzer, B., Böszörmenyi, L.: AAU video browser with augmented navigation bars. In: Li, S., et al. (eds.) MMM 2013. LNCS, vol. 7733, pp. 544–546. Springer, Heidelberg (2013). Scholar
  5. 5.
    Schoeffmann, K., Ahlström, D., Böszörmenyi, L.: Video browsing with a 3D thumbnail ring arranged by color similarity. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, C.-W., Andreopoulos, Y., Breiteneder, C. (eds.) MMM 2012. LNCS, vol. 7131, pp. 660–661. Springer, Heidelberg (2012). Scholar
  6. 6.
    Blažek, A., Lokoč, J., Matzner, F., Skopal, T.: Enhanced signature-based video browser. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 243–248. Springer, Cham (2015). Scholar
  7. 7.
    Barthel, K.U., Hezel, N., Mackowiak, R.: Navigating a graph of scenes for exploring large video collections. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 418–423. Springer, Cham (2016). Scholar
  8. 8.
    Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. IEEE Computer Society, pp. 770–778 (2016)Google Scholar
  10. 10.
    Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). Scholar
  11. 11.
    Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv:1804.02767 (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentCity University of Hong KongHong KongChina
  2. 2.Data Science Department, EURECOMBiotFrance

Personalised recommendations