ECAT - Endoscopic Concept Annotation Tool

  • Bernd MünzerEmail author
  • Andreas Leibetseder
  • Sabrina Kletz
  • Klaus Schoeffmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11296)


The trend to video documentation in minimally invasive surgery demands for effective and expressive semantic content understanding in order to automatically organize huge and rapidly growing endoscopic video archives. To provide such assistance, deep learning proved to be the means of choice, but requires large amounts of high quality training data labeled by domain experts to produce adequate results. We present a web-based annotation system that provides a very efficient workflow for medical domain experts to conveniently create such video training data with minimum effort.


Medical multimedia Video interaction Deep learning 


  1. 1.
    Gambadauro, P., Magos, A.: Surgical videos for accident analysis, performance improvement, and complication prevention: time for a surgical black box? Surg. Innov. 19(1), 76–80 (2012)CrossRefGoogle Scholar
  2. 2.
    Leibetseder, A., Münzer, B., Schoeffmann, K., Keckstein, J.: Endometriosis annotation in endoscopic videos. In: 2017 IEEE International Symposium on Multimedia (ISM), pp. 364–365, December 2017Google Scholar
  3. 3.
    Leibetseder, A., et al.: LapGyn4: a dataset for 4 Automatic content analysis problems in the domain of laparoscopic gynecology. In: Proceedings of the 9th ACM Multimedia Systems Conference. MMSys 2018, pp. 357–362. ACM, New York (2018)Google Scholar
  4. 4.
    Lux, M., Riegler, M.: Annotation of endoscopic videos on mobile devices: a bottom-up approach. In: Proceedings of the 4th ACM Multimedia Systems Conference, pp. 141–145. ACM (2013)Google Scholar
  5. 5.
    Makary, M.A.: The power of video recording: taking quality to the next level. JAMA 309(15), 1591 (2013)CrossRefGoogle Scholar
  6. 6.
    Münzer, B., Schoeffmann, K., Böszörmenyi, L.: Content-based processing and analysis of endoscopic images and videos: a survey. Multimedia Tools Appl. 77(1), 1323–1362 (2018)CrossRefGoogle Scholar
  7. 7.
    Petscharnig, S., Schöffmann, K.: Learning laparoscopic video shot classification for gynecological surgery. Multimedia Tools Appl. 77(7), 8061–8079 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bernd Münzer
    • 1
    Email author
  • Andreas Leibetseder
    • 1
  • Sabrina Kletz
    • 1
  • Klaus Schoeffmann
    • 1
  1. 1.Institute of Information TechnologyKlagenfurt UniversityKlagenfurtAustria

Personalised recommendations