Skip to main content

From Classical to Generalized Zero-Shot Learning: A Simple Adaptation Process

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11296))

Included in the following conference series:

Abstract

Zero-shot learning (ZSL) is concerned with the recognition of previously unseen classes. It relies on additional semantic knowledge for which a mapping can be learned with training examples of seen classes. While classical ZSL considers the recognition performance on unseen classes only, generalized zero-shot learning (GZSL) aims at maximizing performance on both seen and unseen classes. In this paper, we propose a new process for training and evaluation in the GZSL setting; this process addresses the gap in performance between samples from unseen and seen classes by penalizing the latter, and enables to select hyper-parameters well-suited to the GZSL task. It can be applied to any existing ZSL approach and leads to a significant performance boost: the experimental evaluation shows that GZSL performance, averaged over eight state-of-the-art methods, is improved from 28.5 to 42.2 on CUB and from 28.2 to 57.1 on AwA2.

The supplementary material is available at https://arxiv.org/pdf/1809.10120.pdf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AwA2 was recently proposed in [25] as a replacement for the Animals with Attributes (AwA) dataset [15] whose images are not publicly available.

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2016)

    Article  Google Scholar 

  2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the CVPR 2015, pp. 2927–2936. IEEE (2015)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  4. Bucher, M., Herbin, S., Jurie, F.: Generating visual representations for zero-shot classification. In: ICCV Workshops: TASK-CV. IEEE (2017)

    Google Scholar 

  5. Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot learning. In: Proceedings of the CVPR 2016, pp. 5327–5336. IEEE (2016)

    Google Scholar 

  6. Chao, W.-L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 52–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_4

    Chapter  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Proceedings of the NIPS 2013, pp. 2121–2129 (2013)

    Google Scholar 

  9. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2332–2345 (2015)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR 2016, pp. 770–778. IEEE (2016)

    Google Scholar 

  11. Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Unsupervised domain adaptation for zero-shot learning. In: Proceedings of the CVPR 2015, pp. 2452–2460. IEEE (2015)

    Google Scholar 

  12. Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In: Proceedings of the CVPR 2017, pp. 4447–4456. IEEE (2017)

    Google Scholar 

  13. Kumar Verma, V., Arora, G., Mishra, A., Rai, P.: Generalized zero-shot learning via synthesized examples. In: Proceedings of the CVPR 2010, pp. 4281–4289. IEEE (2018)

    Google Scholar 

  14. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: Proceedings of the CVPR 2009, pp. 951–958. IEEE (2009)

    Google Scholar 

  15. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2014)

    Article  Google Scholar 

  16. Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: AAAI, vol. 1, p. 3 (2008)

    Google Scholar 

  17. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with semantic output codes. In: Proceedings of the NIPS 2009, pp. 1410–1418 (2009)

    Google Scholar 

  18. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Rohrbach, M., Ebert, S., Schiele, B.: Transfer learning in a transductive setting. In: Proceedings of the NIPS 2013, pp. 46–54 (2013)

    Google Scholar 

  20. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: Proceedings of the ICML 2015, pp. 2152–2161 (2015)

    Google Scholar 

  21. Shigeto, Y., Suzuki, I., Hara, K., Shimbo, M., Matsumoto, Y.: Ridge regression, hubness, and zero-shot learning. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 135–151. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23528-8_9

    Chapter  Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the CVPR 2015, pp. 1–9. IEEE (2015)

    Google Scholar 

  23. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset (2011)

    Google Scholar 

  24. van Wieringen, W.N.: Lecture notes on ridge regression. arXiv preprint arXiv:1509.09169 (2015)

  25. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600 (2017)

  26. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: Proceedings of the CVPR 2018. IEEE (2018)

    Google Scholar 

  27. Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning - the good, the bad and the ugly. In: Proceedings of the CVPR 2017, pp. 3077–3086. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Le Cacheux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Cacheux, Y., Le Borgne, H., Crucianu, M. (2019). From Classical to Generalized Zero-Shot Learning: A Simple Adaptation Process. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05716-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05715-2

  • Online ISBN: 978-3-030-05716-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics