Diffuse Interface Approaches in Atmosphere and Ocean—Modeling and Numerical Implementation

  • Harald Garcke
  • Michael HinzeEmail author
  • Christian Kahle
Part of the Mathematics of Planet Earth book series (MPE, volume 1)


We propose to model physical effects at the sharp density interface between atmosphere and ocean with the help of diffuse interface approaches for multiphase flows with variable densities. We use the thermodynamical consistent variable density model proposed in Abels et al. (Mathematical Models and Methods in Applied Sciences 22:1150013, 2012). This results in a Cahn–Hilliard-/Navier–Stokes-type system which we complement with tangential Dirichlet boundary conditions to incorporate the effect of wind in the atmosphere. Wind is responsible for waves at the surface of the ocean, whose dynamics have an important impact on the \(\textit{CO}_{2}\)—exchange between ocean and atmosphere. We tackle this mathematical model numerically with fully adaptive and integrated numerical schemes tailored to the simulation of variable density multiphase flows governed by diffuse interface models. Here, fully adaptive, integrated, efficient, and reliable means that the mesh resolution is chosen by the numerical algorithm according to a prescribed error tolerance in the a posteriori error control on the basis of residual-based error indicators, which allow to estimate the true error from below (efficient) and from above (reliable). Our approach is based on the work of Hintermüller et al. (Journal of Computational Physics 235:810–827, 2013), Garcke et al. (Applied Numerical Mathematics 99:151–171, 2016), where a fully adaptive efficient and reliable numerical method for the simulation of two-dimensional multiphase flows with variable densities is developed. In a first step, we incorporate the stimulation of surface waves via appropriate volume forcing.



The authors are grateful for many discussions with Jeff Carpenter from the Helmholtz Center in Geesthacht on practical issues related to the wind-wave coupling at the interface of atmosphere and ocean. The second author acknowledges support of the TRR 181 funded by the German Research Foundation (DFG). The third author acknowledges support by the DFG through the International Research Training Group IGDK 1754 ‘Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structure.’


  1. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013a)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Abels, H., Depner, D., Garcke, H.: On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility. Annales de l’Institut Henri Poincaré (C) Non Linear. Analysis 30(6), 1175–1190 (2013b)Google Scholar
  3. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Model. Methods Appl. Sci. 22(3), 1150013(40) (March 2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Adams, R.A., Fournier, J.H.F.: Sobolev spaces. In: Pure and Applied Mathematics, 2nd edn, vol. 140. Elsevier (2003)Google Scholar
  5. Aki, G.L., Dreyer, W., Giesselmann, J., Kraus, C.: A quasi-incompressible diffuse interface model with phase transition. Math. Model. Methods Appl. Sci. 24(5), 827–861 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 69, 747–761 (2012)MathSciNetCrossRefGoogle Scholar
  7. Aland, S., Lowengrub, J., Voigt, A.: Two-phase flow in complex geometries: a diffuse domain approach. CMES 57, 57(1), 77–108 (2010)MathSciNetzbMATHGoogle Scholar
  8. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Baňas, L., Nürnberg, R.: A posteriori estimates for the Cahn-Hilliard equation. Math. Model. Numer. Anal. 3(5), 1003–1026 (2009)zbMATHCrossRefGoogle Scholar
  10. Barrett, J.W., Garcke, H., Nürnberg, R.: A stable parametric finite element discretization of two-phase Navier-Stokes flow. J. Sci. Comput. 63(1), 78–117 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  11. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: mathematical analysis. Eur. J. Appl. Math. 2, 233–280 (1991)zbMATHCrossRefGoogle Scholar
  13. Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  14. Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)MathSciNetzbMATHGoogle Scholar
  15. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31(1), 41–68 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Boyer, F., Chupin, L., Fabrie, P.: Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model. Eur. J. Mech.-B/Fluids 23(5), 759–780 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2010)MathSciNetCrossRefGoogle Scholar
  18. Chen, L.: i FEM: an innovative finite element method package in Matlab. (2008)
  19. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Analyse numérique 9(2), 77–84 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  20. Constantin, P., Foias, C.: Navier-Stokes-Equations. University of Chicago Press (1988)Google Scholar
  21. Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226(2), 2078–2095 (2007)zbMATHCrossRefGoogle Scholar
  22. Drennan, W., Donelan, M., Terray, E., Katsaros, K.: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr. 26, 808–815 (1996)CrossRefGoogle Scholar
  23. Druzhinin, O.A., Elghobashi, S.: Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation. Phys. Fluids 10, 685–697 (1998)CrossRefGoogle Scholar
  24. Eck, C.: Homogenization of phase field models for binary mixtures. SIAM Multicale Model. Simul. 3(1), 1–27 (2004)MathSciNetzbMATHGoogle Scholar
  25. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Ganesan, S., Tobiska, L.: A coupled arbitrary lagrangian-eulerian and lagrangian method for computation of free surface flows with insoluble surfactants. J. Comput. Phys. 228, 2859–2873 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99, 151–171 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  28. Gross, S., Reusken, A.: Numerical methods for two-phase incompressible flows. In: Springer Series in Computational Mathematics, vol. 40. Springer (2011)Google Scholar
  29. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51(6), 3036–3061 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  30. Grün, G., Guillén-Gonzáles, F., Metzger, S.: On fully decoupled convergent schemes for diffuse interface models for two-phase flow with general mass densities. Commun. Comput. Phys. 19(5), 1473–1502 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  31. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame indifferent diffuse interface model. J. Comput. Phys. 257(A), 708–725 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  32. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Hintermüller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. J. Comput. Phys. 235, 810–827 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  34. Hintermüller, M., Hinze, M., Tber, M.H.: An adaptive finite element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem. Optim. Methods Softw. 25(4–5), 777–811 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259–1288 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  36. James, A.J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201(2), 685–722 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Kahle, C.: Simulation and control of two-phase flow using diffuse-interface models. PhD thesis, University of Hamburg (2014)Google Scholar
  38. Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady state Navier-Stokes equations. SIAM J. Sci. Comput. 24(1), 237–256 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  39. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free. Boundar. 10(1), 15–43 (2008)MathSciNetCrossRefGoogle Scholar
  40. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn-Hilliard equation. J. Comput. Phys. 212, 288–304 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  41. Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2d. SIAM J. Sci. Comput. 29(6), 2241–2257 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  42. Kihara, N., Hanazaki, H., Mizuya, T., Ueda, H.: Relationship between airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids 19(015102) (2007)zbMATHCrossRefGoogle Scholar
  43. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Physics 12, 613–661 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  44. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. A 454(1978), 2617–2654 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  45. Lubin, P., Glockner, S.: Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech. 767, 364–393 (2015)MathSciNetCrossRefGoogle Scholar
  46. McWilliams, J., Sullivan, P., Moeng, C.: Langmuir turbulence in the ocean. J. Fluid Mech. 334, 1–30 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  47. Mellado, J.P., Stevens, B., Schmidt, H., Peters, N.: Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation. Theor. Comput. Fluid Dyn. 24, 511–536 (2010)zbMATHCrossRefGoogle Scholar
  48. Polton, J., Smith, J., MacKinnon, J., Tejada-Martinez, A.: Rapid generation of high frequency internal waves beneath a wind wave forced oceanic surface mixed layer. Geophys. Res. Lett. (L13602) (2008)Google Scholar
  49. Shen, L., Zhang, X., Yue, D., Triantafyllou, M.: Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J. Fluid Mech. 484, 197–221 (2003)zbMATHCrossRefGoogle Scholar
  50. Sullivan, P., McWilliams, J.: Turbulent flow over water waves in the presence of stratification. Phys. Fluids 14, 1182–95 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  51. Sullivan, P., McWilliams, J.: Dynamics of winds and currents coupled to surface waves. Ann. Rev. Fluid Mech. 42, 19–42 (2010)zbMATHCrossRefGoogle Scholar
  52. Sullivan, P., McWilliams, J., Melville, W.: Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech. 593, 405–452 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  53. Sullivan, P., McWilliams, J., Moeng, C.: Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404, 47–85 (2000)zbMATHCrossRefGoogle Scholar
  54. Sutherland, P., Melville, W.: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 45, 943–965 (2015)CrossRefGoogle Scholar
  55. Tsai, W., Chen, S., Lu, G.: Numerical evidence of turbulence generated by nonbreaking surface waves. J. Phys. Oceanogr. 45, 174–180 (2015)CrossRefGoogle Scholar
  56. Tsai, W., Hung, L.: Three-dimensional modeling of small-scale processes in the upper boundary layer bounded by a dynamic ocean surface. J. Geophys. Res. 112, (C02019) (2007)CrossRefGoogle Scholar
  57. Wan, D., Turek, S.: An efficient multigrid-FEM method for the simulation of solid-liquid two phase flows. J. Comp. Appl. Math. 203(2), 561–580 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  58. Verfürth, R.: A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations. Calcolo 47, 149–167 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  59. Wunsch, C., Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans. Ann. Rev. Fluid Mech. 36, 281–314 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Fachbereich MathematikUniversität HamburgHamburgGermany
  3. 3.Zentrum MathematikTechnische Universität MünchenMunichGermany

Personalised recommendations