Skip to main content

Reducing Spurious Diapycnal Mixing in Ocean Models

Part of the Mathematics of Planet Earth book series (MPE,volume 1)

Abstract

Transport algorithms of numerical ocean circulation models are frequently exhibiting truncation errors leading to spurious diapycnal mixing of water masses. This chapter discusses methods that might be useful in diagnosing spurious diapycnal mixing and describes some approaches that might be helpful for its reduction. The first one is related to the use of the Arbitrary Lagrangian Eulerian (ALE) vertical coordinate which allows the implementation of vertically moving meshes that may partly follow the isopycnals even if the basic vertical coordinate differs from isopycnal. The second approach relies on modified advection schemes with the dissipative part of the transport operators directed isopycnally. Finally the third approach deals with new efficient and stable advection algorithms of arbitrary high order based on the WENO-ADER method, which can be applied to both structured and unstructured meshes. While practical benefits of using the reviewed approaches depend on applications, there are indications that equipping present state-of-the-art ocean circulation models with them would lead to reduced spurious transformations.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05704-6_8
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-05704-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9

References

  • Abalakin, I., Dervieux, A., Kozubskaya, T.: A vertex-centered high-order muscl scheme applying to linearized euler acoustics. Rapport de recherche 4459, INRIA (2002)

    Google Scholar 

  • Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 144, 45–58 (1994)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Aboiyar, T., Georgoulis, E., Iske, A.: Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction. SIAM J. Sci. Comput. 32(6), 3251–3277 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Adcroft, A., Hallberg, R.: On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modell. 11, 224–233 (2006)

    CrossRef  Google Scholar 

  • Askey, R.: Radial characteristic functions. Technical Report TSR # 1262, University of Wisconsin, Madison, USA (1973)

    Google Scholar 

  • Balsara, D., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with runge-kutta methods. J. Comput. Phys. 235, 934–969 (2013)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Ben-Artzi, M., Falcovitz, J.: A second-oder Godunov type scheme for compressible fluid dynamics. J. Comput. Phys. 55, 1–32 (1984)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge University Press, Cambridge (2003)

    MATH  CrossRef  Google Scholar 

  • Ben-Artzi, M., Falcovitz, J., Li, J.: The convergence of the GRP scheme. Discrete Contin. Dyn. Syst. 23, 1–27 (2009)

    MathSciNet  MATH  Google Scholar 

  • Ben-Artzi, M., Li, J.: Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem. Numer. Math. 106, 369–425 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flow. J. Comput. Phys. 218, 19–43 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Boscheri, W., Balsara, D., Dumbser, M.: Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014a)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Boscheri, W., Dumbser: Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14, 1174–1206 (2013)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Boscheri, W., Dumbser, M.: A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3d. J. Comput. Phys. 275, 484–523 (2014)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Boscheri, W., Dumbser, M., Balsara, D.: High order Lagrangian ADER-WENO schemes on unstructured meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Methods Fluids 76, 737–778 (2014b)

    CrossRef  Google Scholar 

  • Bourgeade, A., LeFloch, P., Raviart, P.: An asymptotic expansion for the solution of the generalized Riemann problem. Part 2: application to the equations of gas dynamics. Ann. Inst. H. Poincare Anal. Non Linéaire 6, 437–480 (1989)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Bressan, A.: Hyperbolic Systems of Conservation Laws—The Onedimensional Cauchy Problem. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  • Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge, UK (2003)

    MATH  CrossRef  Google Scholar 

  • Burchard, H.: Quantification of numerically induced mixing and dissipation in discretisations of shallow water equations. Int. J. Geomath 3, 51–65 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Burchard, H., Beckers, J.M.: Non-uniform adaptive vertical grids in one-dimensional numerical ocean models. Ocean Modell. 6, 51–81 (2004)

    CrossRef  Google Scholar 

  • Burchard, H., Bolding, K.: GETM—a general estuarine transport model. Scientific documentation. Technical Report EUR 20253 EN, European Commission (2002)

    Google Scholar 

  • Burchard, H., Rennau, H.: Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Modell. 20, 293–311 (2008)

    CrossRef  Google Scholar 

  • Castro, C.E., Toro, E.F.: Solvers for thr high-order Riemann problem for hyperbolic balance laws. J. Comput. Phys. 227, 2481–2513 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys, 54 (1984)

    MATH  Google Scholar 

  • Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Heidelberg (2010)

    MATH  CrossRef  Google Scholar 

  • Danilov, S.: Ocean modeling on unstructured meshes. Ocean Modell. 69, 195–210 (2013)

    CrossRef  Google Scholar 

  • Danilov, S., Sidorenko, D., Wang, Q., Jung, T.: The Finite-volumE Sea ice-Ocean model (FESOM2). Geosci. Mod. Dev. 10, 765–789 (2017)

    CrossRef  Google Scholar 

  • Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley (2003)

    Google Scholar 

  • Donea, J., Huerta, A., Ponthot, J.-P., Rodríguez-Ferran, A.: Arbitrary lagrangian-eulerian methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, chapter 14, pp. 1–25. Wiley (2004)

    Google Scholar 

  • Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables, pp. 85–100. Springer (1977)

    Google Scholar 

  • Dumbser, M., Balsara, D., Toro, E., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008a)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008b)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Dumbser, M., Käser, M.: Arbitrary high-order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230, 4232–4247 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Gassner, G., Lörcher, F., Munz, C.D.: A discontinuous Galerkin scheme based on a space-time expansion ii. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Getzlaff, J., Nurser, G., Oschlies, A.: Diagnostics of diapycnal diffusivity in \(z\)-level ocean models. Part i: 1-dimensional case studies. Ocean Modell. 35, 173–186 (2010)

    CrossRef  Google Scholar 

  • Getzlaff, J., Nurser, G., Oschlies, A.: Diagnostics of diapycnal diffusion in \(z\)-level ocean models. Part ii: 3-dimensional OGCM. Ocean Modell. 45–46, 27–36 (2012)

    CrossRef  Google Scholar 

  • Gibson, A.H., Hogg, A.M, Kiss, A.E., Shakespeare, C.J., Adcroft, A.: Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian Eulerian ocean model. Ocean Modell. 119, 45–56 (2017)

    CrossRef  Google Scholar 

  • Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations (in Russian). Math. Sbornik 47, 271–306 (1959)

    Google Scholar 

  • Goetz, C.R., Dumbser, M.: A novel solver for the generalized Riemann problem based on a simplified LeFloch-Raviart expansion and a local space-time discontinuous Galerkin formulation. J. Sci. Comput. 69, 805–840 (2016)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Goetz, C.R., Iske, A.: Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws. Math. Comput. 85, 35–62 (2016)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H.: Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Modell. 92, 56–68 (2015)

    CrossRef  Google Scholar 

  • Griffies, S.M., Pacanowski, R.C., Hallberg, R.: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev. 128, 538–564 (2000)

    CrossRef  Google Scholar 

  • Harabetian, E.: A convergent series expansion for hyperbolic systems of conservation laws. Trans. Am. Math. Soc. 294, 383–424 (1986)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order essentially non-oscillatory schemes. III. J. Comput. Phys. 77, 231–303 (1987)

    MATH  CrossRef  Google Scholar 

  • Hill, C., Ferreira, D., Campin, J.-M., Marshall, J., Abernathey, R., Barrie, N.: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models—insights from virtual deliberate tracer release experiments. Ocean Modell. 45–46, 14–26 (2012)

    CrossRef  Google Scholar 

  • Hirt, C.W.: Heuristic stability theory for finite-difference equations. J. Comput. Phys. 2, 339–355 (1968)

    MATH  CrossRef  Google Scholar 

  • Hofmeister, R., Burchard, H., Beckers, J.M.: Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Modell. 33, 70–86 (2010)

    CrossRef  Google Scholar 

  • Ilicak, M., Adcroft, A.J., Griffies, S.M., Hallberg, R.W.: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell. 45, 37–58 (2012)

    CrossRef  Google Scholar 

  • Ilicak, M.: Quantifying spatial distribution of spurious mixing in ocean models. Ocean Modell. 108, 30–38 (2016)

    CrossRef  Google Scholar 

  • Iske, A.: Polyharmonic spline reconstruction in adaptive particle flow simulation. In: Iske, A., Levesley, J. (eds.) Algorithms for Approximation, pp. 83–102. Springer, Berlin (2007)

    CrossRef  Google Scholar 

  • Iske, A.: On the construction of kernel-based adaptive particle methods in numerical flow simulation. In:. Ansorge, R, Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), pp. 197–221. Springer, Berlin (2013)

    MATH  Google Scholar 

  • Iske, A.: Approximation. Springer-Lehrbuch Masterclass, Springer Spektrum (2018)

    MATH  CrossRef  Google Scholar 

  • Klingbeil, K., Burchard, H.: Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model. Ocean Modell. 65, 64–77 (2013)

    CrossRef  Google Scholar 

  • Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., Burchard, H.: Quantification of spurious dissipation and mixing discrete variance decay in a finite-volume framework. Ocean Modell. 81, 49–64 (2014)

    CrossRef  Google Scholar 

  • Klingbeil, K., Lemarié, F., Debreu, L., Burchard, H.: The numerics of hydrostatic structured-grid coastal ocean models: state of the art and future perspectives. Ocean Modell. 125, 80–105 (2018a)

    CrossRef  Google Scholar 

  • Klingbeil, K., Becherer, J., Schulz, E., de Swart, H. E., Schuttelaars, H. M., Valle-Levinson, A., Burchard, H.: Thickness-weighted averaging in tidal estuaries and the vertical distribution of the Eulerian residual transport. J. Phys. Oceanogr (2018b) (revised)

    Google Scholar 

  • Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10(4), 537–566 (1957)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Leclair, M., Madec, G.: \(\tilde{z}\)-coordinate, an Arbitrary Lagrangian-Eulerian coordinate separating high and low frequency motions. Ocean Modell. 37, 139–152 (2011)

    CrossRef  Google Scholar 

  • LeFloch, P., Raviart, P.A.: An asymptotic expansion for the solution of the generalized Riemann problem. Part i: general theory. Ann. Inst. H. Poincare Anal. Non Linéaire 5, 179–207 (1988)

    MathSciNet  CrossRef  Google Scholar 

  • Lemarié, F., Debreu, L., Shchepetkin, A.F., McWilliams, J.C.: On the stability and accuracy of the harmonic and biharmonic isoneutral mixing operators in ocean models. Ocean Modell. 52–53, 9–35 (2012a)

    CrossRef  Google Scholar 

  • Lemarié, F., Kurian, J., Shchepetkin, A.F., Molemaker, M.J., Colas, F., McWilliams, J.C.: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell. 42, 57–79 (2012b)

    CrossRef  Google Scholar 

  • LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002)

    Google Scholar 

  • Li, T., Yu, W.: Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Press, Durham (1985)

    Google Scholar 

  • Lörcher, F., Gassner, G., Munz, C.D.: A discontinuous Galerkin scheme based on a space-time expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32, 175–199 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Mohammadi-Aragh, M., Klingbeil, K., Brüggemann, N., Eden, C., Burchard, H.: The impact of advection schemes on restratifiction due to lateral shear and baroclinic instabilities. Ocean Modell. 94, 112–127 (2015)

    CrossRef  Google Scholar 

  • Montecinos, G., Castro, C.E., Dumbser, M., Toro, E.F.: Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. J. Comput. Phys. 231, 6472–6494 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Morales Maqueda, M.A., Holloway, G.: Second-order moment advection scheme applied to Arctic Ocean simulation. Ocean Modell. 14, 197–221 (2006)

    CrossRef  Google Scholar 

  • Nakayama, Y., Timmermann, R., Schröder, M., Hellmer, H.: On the difficulty of modeling circumpolar deep water intrusions onto the Amundsen Sea continental shelf. Ocean Modell. 84, 26–34 (2014)

    CrossRef  Google Scholar 

  • Petersen, M.R., Jacobsen, D.W., Ringler, T.D., Hecht, M.W., Maltrud, M.E.: Evaluation of the arbitrary lagrangian-eulerian vertical coordinate method in the mpas-ocean model. Ocean Modell. 86, 93–113 (2015)

    CrossRef  Google Scholar 

  • Prather, M.J.: Numerical advection by conservation of second-order moments. J. Geophys. Res. 91(D6), 6671–6681 (1986)

    CrossRef  Google Scholar 

  • Qian, J., Li, J., Wang, S.: The generalized Riemann problem for compressible fluid flows: towards high order. J. Comput. Phys. 259, 358–389 (2014)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud, M.: A multi-resolution approach to global ocean modeling. Ocean Modell. 69, 211–232 (2013)

    CrossRef  Google Scholar 

  • Shchepetkin, A.F., McWilliams, J.C.: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather. Rev. 126, 1541–1580 (1998)

    CrossRef  Google Scholar 

  • Shchepetkin, A.F., McWilliams, J.C.: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al. Journal of Computational Physics, vol. 227, pp. 3595–3624; vol. 228, pp. 8985–9000 (2009)

    Google Scholar 

  • Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Goessling, H.F., Handorf, D., Harig, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D.V., Wang, Q.: Towards multi-resolution global climate modeling with echam6-fesom. Part i: model formulation and mean climate. Clim. Dyn. 44(3), 757–780 (2015)

    CrossRef  Google Scholar 

  • Skamarock, W.C., Gassmann, A.: Conservative transport schemes for spherical geodesic grids: high-order flux operators for ode-based time integration. Mon. Wea. Rev. 139, 2962–2975 (2011)

    CrossRef  Google Scholar 

  • Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1994)

    MATH  CrossRef  Google Scholar 

  • Tatsien, L., Libin, W.: Global Propagation of Regular Nonlinear Hyperbolic Waves. Brikháuser, Boston (2009)

    MATH  CrossRef  Google Scholar 

  • Timmermann, R., Wang, Q., Hellmer, H.: Ice-shelf basal melting in a global finite-element sea-ice/ice-shelf/ocean model. Ann. Glaciol. 53, 303–314 (2012)

    CrossRef  Google Scholar 

  • Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Toro, E., Montecinos, G.: Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws. J. Comput. Phys. 303, 146–172 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3 edn. Springer (2009)

    Google Scholar 

  • Toro, E.F.: The Riemann problem: solvers and numerical fluxes. In: Handbook of Numerical Analysis, vol. 17, chapter 2, pp. 19–54. Elsevier (2016)

    Google Scholar 

  • Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Toro, E.F. (ed.) Godunov Methods; Theory and Applications, pp. 907–940, Oxford. Kluwer Academic Plenum Publishers. International Conference (2001)

    MATH  CrossRef  Google Scholar 

  • Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Toro, E.F. (ed.) Godunov Methods; Theory and Applications, pp. 907–940. Kluwer Academic Plenum Publishers, Oxford. International Conference (2001)

    MATH  CrossRef  Google Scholar 

  • Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection? Reaction equations. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 458, pp. 271–281 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212, 150–165 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Urakawa, L.S., Hasumi, H.: Effect of numerical diffusion on the water mass transformation in eddy-resolving models. Ocean Modell. 74, 22–35 (2014)

    CrossRef  Google Scholar 

  • van Leer, B.: Towards the ultimate conservative difference scheme. v. a second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    MATH  CrossRef  Google Scholar 

  • Wan, H., Giorgetta, M.A., Zängl, G., Restelli, M., Majewski, D., Bonaventura, L., Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh, L., Förstner, J.: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—part 1: formulation and performance of the baseline version. Geosci. Model Dev. 6(3), 735–763 (2013)

    CrossRef  Google Scholar 

  • Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., Schröter, J.: The finite element sea ice-ocean model (fesom) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7, 663–693 (2014)

    CrossRef  Google Scholar 

  • Warming, R.F., Hyett, B.J.: The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14, 159–179 (1974)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Webb, D.J., de Cuevas, B.A., Richmond, C.S.: Improved advection schemes for ocean models. J. Atmos. Ocean. Technol. 15(5), 1171–1187 (1998)

    CrossRef  Google Scholar 

  • Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK (2005)

    MATH  Google Scholar 

  • Yang, Z., He, P., Tang, H.: A direct eulerian grp scheme for relativistic hydrodynamics: one-dimensional case. J. Comput. Phys. 230, 7964–7987 (2011)

    MathSciNet  MATH  Google Scholar 

  • Zanotti, O., Dumbser, M.: Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables. Comput. Astrophys. Cosmol. (2016)

    Google Scholar 

  • Zanotti, O., Fambri, F., Dumbser, M.: Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement. Mon. Not. R. Astron. Soc. 452, 3290 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Iske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Klingbeil, K., Burchard, H., Danilov, S., Goetz, C., Iske, A. (2019). Reducing Spurious Diapycnal Mixing in Ocean Models. In: Eden, C., Iske, A. (eds) Energy Transfers in Atmosphere and Ocean. Mathematics of Planet Earth, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-05704-6_8

Download citation