Reducing Spurious Diapycnal Mixing in Ocean Models

  • Knut Klingbeil
  • Hans Burchard
  • Sergey Danilov
  • Claus Goetz
  • Armin IskeEmail author
Part of the Mathematics of Planet Earth book series (MPE, volume 1)


Transport algorithms of numerical ocean circulation models are frequently exhibiting truncation errors leading to spurious diapycnal mixing of water masses. This chapter discusses methods that might be useful in diagnosing spurious diapycnal mixing and describes some approaches that might be helpful for its reduction. The first one is related to the use of the Arbitrary Lagrangian Eulerian (ALE) vertical coordinate which allows the implementation of vertically moving meshes that may partly follow the isopycnals even if the basic vertical coordinate differs from isopycnal. The second approach relies on modified advection schemes with the dissipative part of the transport operators directed isopycnally. Finally the third approach deals with new efficient and stable advection algorithms of arbitrary high order based on the WENO-ADER method, which can be applied to both structured and unstructured meshes. While practical benefits of using the reviewed approaches depend on applications, there are indications that equipping present state-of-the-art ocean circulation models with them would lead to reduced spurious transformations.


  1. Abalakin, I., Dervieux, A., Kozubskaya, T.: A vertex-centered high-order muscl scheme applying to linearized euler acoustics. Rapport de recherche 4459, INRIA (2002)Google Scholar
  2. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 144, 45–58 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Aboiyar, T., Georgoulis, E., Iske, A.: Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction. SIAM J. Sci. Comput. 32(6), 3251–3277 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Adcroft, A., Hallberg, R.: On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modell. 11, 224–233 (2006)CrossRefGoogle Scholar
  5. Askey, R.: Radial characteristic functions. Technical Report TSR # 1262, University of Wisconsin, Madison, USA (1973)Google Scholar
  6. Balsara, D., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with runge-kutta methods. J. Comput. Phys. 235, 934–969 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ben-Artzi, M., Falcovitz, J.: A second-oder Godunov type scheme for compressible fluid dynamics. J. Comput. Phys. 55, 1–32 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  8. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  9. Ben-Artzi, M., Falcovitz, J., Li, J.: The convergence of the GRP scheme. Discrete Contin. Dyn. Syst. 23, 1–27 (2009)MathSciNetzbMATHGoogle Scholar
  10. Ben-Artzi, M., Li, J.: Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem. Numer. Math. 106, 369–425 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flow. J. Comput. Phys. 218, 19–43 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Boscheri, W., Balsara, D., Dumbser, M.: Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014a)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Boscheri, W., Dumbser: Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14, 1174–1206 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  14. Boscheri, W., Dumbser, M.: A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3d. J. Comput. Phys. 275, 484–523 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  15. Boscheri, W., Dumbser, M., Balsara, D.: High order Lagrangian ADER-WENO schemes on unstructured meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Methods Fluids 76, 737–778 (2014b)CrossRefGoogle Scholar
  16. Bourgeade, A., LeFloch, P., Raviart, P.: An asymptotic expansion for the solution of the generalized Riemann problem. Part 2: application to the equations of gas dynamics. Ann. Inst. H. Poincare Anal. Non Linéaire 6, 437–480 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Bressan, A.: Hyperbolic Systems of Conservation Laws—The Onedimensional Cauchy Problem. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  18. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge, UK (2003)zbMATHCrossRefGoogle Scholar
  19. Burchard, H.: Quantification of numerically induced mixing and dissipation in discretisations of shallow water equations. Int. J. Geomath 3, 51–65 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  20. Burchard, H., Beckers, J.M.: Non-uniform adaptive vertical grids in one-dimensional numerical ocean models. Ocean Modell. 6, 51–81 (2004)CrossRefGoogle Scholar
  21. Burchard, H., Bolding, K.: GETM—a general estuarine transport model. Scientific documentation. Technical Report EUR 20253 EN, European Commission (2002)Google Scholar
  22. Burchard, H., Rennau, H.: Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Modell. 20, 293–311 (2008)CrossRefGoogle Scholar
  23. Castro, C.E., Toro, E.F.: Solvers for thr high-order Riemann problem for hyperbolic balance laws. J. Comput. Phys. 227, 2481–2513 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys, 54 (1984)zbMATHGoogle Scholar
  25. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  26. Danilov, S.: Ocean modeling on unstructured meshes. Ocean Modell. 69, 195–210 (2013)CrossRefGoogle Scholar
  27. Danilov, S., Sidorenko, D., Wang, Q., Jung, T.: The Finite-volumE Sea ice-Ocean model (FESOM2). Geosci. Mod. Dev. 10, 765–789 (2017)CrossRefGoogle Scholar
  28. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley (2003)Google Scholar
  29. Donea, J., Huerta, A., Ponthot, J.-P., Rodríguez-Ferran, A.: Arbitrary lagrangian-eulerian methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, chapter 14, pp. 1–25. Wiley (2004)Google Scholar
  30. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables, pp. 85–100. Springer (1977)Google Scholar
  31. Dumbser, M., Balsara, D., Toro, E., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008a)MathSciNetzbMATHCrossRefGoogle Scholar
  32. Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008b)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Dumbser, M., Käser, M.: Arbitrary high-order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  34. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230, 4232–4247 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Gassner, G., Lörcher, F., Munz, C.D.: A discontinuous Galerkin scheme based on a space-time expansion ii. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Getzlaff, J., Nurser, G., Oschlies, A.: Diagnostics of diapycnal diffusivity in \(z\)-level ocean models. Part i: 1-dimensional case studies. Ocean Modell. 35, 173–186 (2010)CrossRefGoogle Scholar
  38. Getzlaff, J., Nurser, G., Oschlies, A.: Diagnostics of diapycnal diffusion in \(z\)-level ocean models. Part ii: 3-dimensional OGCM. Ocean Modell. 45–46, 27–36 (2012)CrossRefGoogle Scholar
  39. Gibson, A.H., Hogg, A.M, Kiss, A.E., Shakespeare, C.J., Adcroft, A.: Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian Eulerian ocean model. Ocean Modell. 119, 45–56 (2017)CrossRefGoogle Scholar
  40. Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations (in Russian). Math. Sbornik 47, 271–306 (1959)Google Scholar
  41. Goetz, C.R., Dumbser, M.: A novel solver for the generalized Riemann problem based on a simplified LeFloch-Raviart expansion and a local space-time discontinuous Galerkin formulation. J. Sci. Comput. 69, 805–840 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  42. Goetz, C.R., Iske, A.: Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws. Math. Comput. 85, 35–62 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  43. Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H.: Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Modell. 92, 56–68 (2015)CrossRefGoogle Scholar
  44. Griffies, S.M., Pacanowski, R.C., Hallberg, R.: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev. 128, 538–564 (2000)CrossRefGoogle Scholar
  45. Harabetian, E.: A convergent series expansion for hyperbolic systems of conservation laws. Trans. Am. Math. Soc. 294, 383–424 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  46. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order essentially non-oscillatory schemes. III. J. Comput. Phys. 77, 231–303 (1987)zbMATHCrossRefGoogle Scholar
  47. Hill, C., Ferreira, D., Campin, J.-M., Marshall, J., Abernathey, R., Barrie, N.: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models—insights from virtual deliberate tracer release experiments. Ocean Modell. 45–46, 14–26 (2012)CrossRefGoogle Scholar
  48. Hirt, C.W.: Heuristic stability theory for finite-difference equations. J. Comput. Phys. 2, 339–355 (1968)zbMATHCrossRefGoogle Scholar
  49. Hofmeister, R., Burchard, H., Beckers, J.M.: Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Modell. 33, 70–86 (2010)CrossRefGoogle Scholar
  50. Ilicak, M., Adcroft, A.J., Griffies, S.M., Hallberg, R.W.: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell. 45, 37–58 (2012)CrossRefGoogle Scholar
  51. Ilicak, M.: Quantifying spatial distribution of spurious mixing in ocean models. Ocean Modell. 108, 30–38 (2016)CrossRefGoogle Scholar
  52. Iske, A.: Polyharmonic spline reconstruction in adaptive particle flow simulation. In: Iske, A., Levesley, J. (eds.) Algorithms for Approximation, pp. 83–102. Springer, Berlin (2007)CrossRefGoogle Scholar
  53. Iske, A.: On the construction of kernel-based adaptive particle methods in numerical flow simulation. In:. Ansorge, R, Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), pp. 197–221. Springer, Berlin (2013)zbMATHGoogle Scholar
  54. Iske, A.: Approximation. Springer-Lehrbuch Masterclass, Springer Spektrum (2018)zbMATHCrossRefGoogle Scholar
  55. Klingbeil, K., Burchard, H.: Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model. Ocean Modell. 65, 64–77 (2013)CrossRefGoogle Scholar
  56. Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., Burchard, H.: Quantification of spurious dissipation and mixing discrete variance decay in a finite-volume framework. Ocean Modell. 81, 49–64 (2014)CrossRefGoogle Scholar
  57. Klingbeil, K., Lemarié, F., Debreu, L., Burchard, H.: The numerics of hydrostatic structured-grid coastal ocean models: state of the art and future perspectives. Ocean Modell. 125, 80–105 (2018a)CrossRefGoogle Scholar
  58. Klingbeil, K., Becherer, J., Schulz, E., de Swart, H. E., Schuttelaars, H. M., Valle-Levinson, A., Burchard, H.: Thickness-weighted averaging in tidal estuaries and the vertical distribution of the Eulerian residual transport. J. Phys. Oceanogr (2018b) (revised)Google Scholar
  59. Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10(4), 537–566 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  60. Leclair, M., Madec, G.: \(\tilde{z}\)-coordinate, an Arbitrary Lagrangian-Eulerian coordinate separating high and low frequency motions. Ocean Modell. 37, 139–152 (2011)CrossRefGoogle Scholar
  61. LeFloch, P., Raviart, P.A.: An asymptotic expansion for the solution of the generalized Riemann problem. Part i: general theory. Ann. Inst. H. Poincare Anal. Non Linéaire 5, 179–207 (1988)MathSciNetCrossRefGoogle Scholar
  62. Lemarié, F., Debreu, L., Shchepetkin, A.F., McWilliams, J.C.: On the stability and accuracy of the harmonic and biharmonic isoneutral mixing operators in ocean models. Ocean Modell. 52–53, 9–35 (2012a)CrossRefGoogle Scholar
  63. Lemarié, F., Kurian, J., Shchepetkin, A.F., Molemaker, M.J., Colas, F., McWilliams, J.C.: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell. 42, 57–79 (2012b)CrossRefGoogle Scholar
  64. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002)Google Scholar
  65. Li, T., Yu, W.: Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Press, Durham (1985)Google Scholar
  66. Lörcher, F., Gassner, G., Munz, C.D.: A discontinuous Galerkin scheme based on a space-time expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32, 175–199 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  67. Mohammadi-Aragh, M., Klingbeil, K., Brüggemann, N., Eden, C., Burchard, H.: The impact of advection schemes on restratifiction due to lateral shear and baroclinic instabilities. Ocean Modell. 94, 112–127 (2015)CrossRefGoogle Scholar
  68. Montecinos, G., Castro, C.E., Dumbser, M., Toro, E.F.: Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. J. Comput. Phys. 231, 6472–6494 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  69. Morales Maqueda, M.A., Holloway, G.: Second-order moment advection scheme applied to Arctic Ocean simulation. Ocean Modell. 14, 197–221 (2006)CrossRefGoogle Scholar
  70. Nakayama, Y., Timmermann, R., Schröder, M., Hellmer, H.: On the difficulty of modeling circumpolar deep water intrusions onto the Amundsen Sea continental shelf. Ocean Modell. 84, 26–34 (2014)CrossRefGoogle Scholar
  71. Petersen, M.R., Jacobsen, D.W., Ringler, T.D., Hecht, M.W., Maltrud, M.E.: Evaluation of the arbitrary lagrangian-eulerian vertical coordinate method in the mpas-ocean model. Ocean Modell. 86, 93–113 (2015)CrossRefGoogle Scholar
  72. Prather, M.J.: Numerical advection by conservation of second-order moments. J. Geophys. Res. 91(D6), 6671–6681 (1986)CrossRefGoogle Scholar
  73. Qian, J., Li, J., Wang, S.: The generalized Riemann problem for compressible fluid flows: towards high order. J. Comput. Phys. 259, 358–389 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  74. Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud, M.: A multi-resolution approach to global ocean modeling. Ocean Modell. 69, 211–232 (2013)CrossRefGoogle Scholar
  75. Shchepetkin, A.F., McWilliams, J.C.: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather. Rev. 126, 1541–1580 (1998)CrossRefGoogle Scholar
  76. Shchepetkin, A.F., McWilliams, J.C.: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al. Journal of Computational Physics, vol. 227, pp. 3595–3624; vol. 228, pp. 8985–9000 (2009)Google Scholar
  77. Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Goessling, H.F., Handorf, D., Harig, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D.V., Wang, Q.: Towards multi-resolution global climate modeling with echam6-fesom. Part i: model formulation and mean climate. Clim. Dyn. 44(3), 757–780 (2015)CrossRefGoogle Scholar
  78. Skamarock, W.C., Gassmann, A.: Conservative transport schemes for spherical geodesic grids: high-order flux operators for ode-based time integration. Mon. Wea. Rev. 139, 2962–2975 (2011)CrossRefGoogle Scholar
  79. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1994)zbMATHCrossRefGoogle Scholar
  80. Tatsien, L., Libin, W.: Global Propagation of Regular Nonlinear Hyperbolic Waves. Brikháuser, Boston (2009)zbMATHCrossRefGoogle Scholar
  81. Timmermann, R., Wang, Q., Hellmer, H.: Ice-shelf basal melting in a global finite-element sea-ice/ice-shelf/ocean model. Ann. Glaciol. 53, 303–314 (2012)CrossRefGoogle Scholar
  82. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  83. Toro, E., Montecinos, G.: Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws. J. Comput. Phys. 303, 146–172 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  84. Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3 edn. Springer (2009)Google Scholar
  85. Toro, E.F.: The Riemann problem: solvers and numerical fluxes. In: Handbook of Numerical Analysis, vol. 17, chapter 2, pp. 19–54. Elsevier (2016)Google Scholar
  86. Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Toro, E.F. (ed.) Godunov Methods; Theory and Applications, pp. 907–940, Oxford. Kluwer Academic Plenum Publishers. International Conference (2001)zbMATHCrossRefGoogle Scholar
  87. Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Toro, E.F. (ed.) Godunov Methods; Theory and Applications, pp. 907–940. Kluwer Academic Plenum Publishers, Oxford. International Conference (2001)zbMATHCrossRefGoogle Scholar
  88. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection? Reaction equations. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 458, pp. 271–281 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  89. Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212, 150–165 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  90. Urakawa, L.S., Hasumi, H.: Effect of numerical diffusion on the water mass transformation in eddy-resolving models. Ocean Modell. 74, 22–35 (2014)CrossRefGoogle Scholar
  91. van Leer, B.: Towards the ultimate conservative difference scheme. v. a second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)zbMATHCrossRefGoogle Scholar
  92. Wan, H., Giorgetta, M.A., Zängl, G., Restelli, M., Majewski, D., Bonaventura, L., Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh, L., Förstner, J.: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—part 1: formulation and performance of the baseline version. Geosci. Model Dev. 6(3), 735–763 (2013)CrossRefGoogle Scholar
  93. Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., Schröter, J.: The finite element sea ice-ocean model (fesom) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7, 663–693 (2014)CrossRefGoogle Scholar
  94. Warming, R.F., Hyett, B.J.: The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14, 159–179 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  95. Webb, D.J., de Cuevas, B.A., Richmond, C.S.: Improved advection schemes for ocean models. J. Atmos. Ocean. Technol. 15(5), 1171–1187 (1998)CrossRefGoogle Scholar
  96. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK (2005)zbMATHGoogle Scholar
  97. Yang, Z., He, P., Tang, H.: A direct eulerian grp scheme for relativistic hydrodynamics: one-dimensional case. J. Comput. Phys. 230, 7964–7987 (2011)MathSciNetzbMATHGoogle Scholar
  98. Zanotti, O., Dumbser, M.: Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables. Comput. Astrophys. Cosmol. (2016)Google Scholar
  99. Zanotti, O., Fambri, F., Dumbser, M.: Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement. Mon. Not. R. Astron. Soc. 452, 3290 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Knut Klingbeil
    • 1
  • Hans Burchard
    • 1
  • Sergey Danilov
    • 2
    • 3
  • Claus Goetz
    • 4
  • Armin Iske
    • 4
    Email author
  1. 1.Leibniz Institute for Baltic Sea Research Warnemünde (IOW)Rostock-WarnemündeGermany
  2. 2.Alfred Wegener Institute for Polar and Marine Research (AWI)BremerhavenGermany
  3. 3.Jacobs UniversityBremenGermany
  4. 4.Fachbereich MathematikUniversität HamburgHamburgGermany

Personalised recommendations