Toward Consistent Subgrid Momentum Closures in Ocean Models

  • Sergey Danilov
  • Stephan Juricke
  • Anton Kutsenko
  • Marcel OliverEmail author
Part of the Mathematics of Planet Earth book series (MPE, volume 1)


State-of-the-art global ocean circulation models used in climate studies are only passing the edge of becoming “eddy-permitting” or barely eddy-resolving. Such models commonly suffer from overdissipation of mesoscale eddies by routinely used subgrid dissipation (viscosity) operators and a resulting depletion of energy in the large-scale structures which are crucial for draining available potential energy into kinetic energy. More broadly, subgrid momentum closures may lead to both overdissipation or pileup of eddy kinetic energy and enstrophy of the smallest resolvable scales. The aim of this chapter is twofold. First, it reviews the theory of two-dimensional and geostrophic turbulence. To a large part, this is textbook material with particular emphasis, however, on issues relevant to modeling the global ocean in the eddy-permitting regime. Second, we discuss several recent parameterizations of subgrid dynamics, including simplified backscatter schemes by Jansen and Held, stochastic superparameterizations by Grooms and Majda, and an empirical backscatter scheme by Mana and Zanna.


  1. Aizinger, V., Korn, P., Giorgetta, M., Reich, S.: Large-scale turbulence modelling via \(\alpha \)-regularisation for atmospheric simulations. J. Turbul. 16(4), 367–391 (2015)MathSciNetCrossRefGoogle Scholar
  2. Aluie, H.: Scale decomposition in compressible turbulence. Phys. D 247(1), 54–65 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Aluie, H., Kurien, S.: Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows. Europhys. Lett. 96(4), 44006 (2011)CrossRefGoogle Scholar
  4. Andrews, D.G., McIntyre, M.E.: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89(4), 609–646 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Anstey, J.A., Zanna, L.: A deformation-based parametrization of ocean mesoscale eddy Reynolds stresses. Ocean Model. 112, 99–111 (2017)CrossRefGoogle Scholar
  6. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16(1), 319–361 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Augier, P., Lindborg, E.: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci. 70, 2293–2308 (2013)CrossRefGoogle Scholar
  8. Badin, G.: On the role of non-uniform stratification and short-wave instabilities in three-layer quasi-geostrophic turbulence. Phys. Fluids 26(9), 096603 (2014)CrossRefGoogle Scholar
  9. Badin, G., Oliver, M., Vasylkevych, S.: Geometric Lagrangian averaged Euler–Boussinesq and primitive equations. J. Phys. A: Math. Theor. 51(45), 455501 (2018)MathSciNetCrossRefGoogle Scholar
  10. Batchelor, G.K.: Computation of energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. 12, II:233–239 (1969)zbMATHGoogle Scholar
  11. Berloff, P.: Dynamically consistent parameterization of mesoscale eddies. Part I: simple model. Ocean Model. 87, 1–19 (2015)CrossRefGoogle Scholar
  12. Berloff, P.: Dynamically consistent parameterization of mesoscale eddies. Part II: eddy fluxes and diffusivity from transient impulses. Fluids 1(3), 22 (2016)CrossRefGoogle Scholar
  13. Callies, J., Ferrari, R.: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr. 43, 2456–2474 (2013)CrossRefGoogle Scholar
  14. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  15. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31(C), 1–33 (1994)zbMATHGoogle Scholar
  16. Capet, X., McWilliams, J.C., Molemaker, M.J., Shchepetkin, A.F.: Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. J. Phys. Oceanogr. 38, 2256–2269 (2008)CrossRefGoogle Scholar
  17. Cessi, P.: An energy-constrained parameterization of eddy buoyancy flux. J. Phys. Oceanogr. 38, 1807–1819 (2008)CrossRefGoogle Scholar
  18. Chaouat, B.: Simulations of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method. Phys. Fluids 24(4), 045108 (2012)CrossRefGoogle Scholar
  19. Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28(6), 1087–1095 (1971)CrossRefGoogle Scholar
  20. Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa-Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11(8), 2343–2353 (1999a)MathSciNetzbMATHCrossRefGoogle Scholar
  21. Chen, S., Holm, D.D., Margolin, L.G., Zhang, R.: Direct numerical simulations of the Navier-Stokes alpha model. Phys. D 133(1–4), 66–83 (1999b)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Cioranescu, D., Girault, V.: Weak and classical solutions of a family of second grade fluids. Int. J. Non-Linear Mech. 32(2), 317–335 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  23. Cooper, F.C.: Optimisation of an idealised primitive equation ocean model using stochastic parameterization. Ocean Model. 113, 187–200 (2017)CrossRefGoogle Scholar
  24. Cooper, F.C., Zanna, L.: Optimisation of an idealised ocean model, stochastic parameterisation of sub-grid eddies. Ocean Model. 88, 38–53 (2015)CrossRefGoogle Scholar
  25. Daly, B., Harlow, F.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)CrossRefGoogle Scholar
  26. Danilov, S.: Non-universal features of forced 2D turbulence in the energy and enstrophy ranges. Discret. Contin. Dyn. Syst. Ser. B 5(1), 67–78 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. Danilov, S.: Ocean modeling on unstructured meshes. Ocean Model. 69, 195–210 (2013)CrossRefGoogle Scholar
  28. Danilov, S., Gurarie, D.: Forced two-dimensional turbulence in spectral and physical space. Phys. Rev. E 63(6), 061208 (2001)CrossRefGoogle Scholar
  29. Danilov, S., Gurarie, D.: Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids 16, 2592–2603 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  30. Danilov, S., Wang, Q.: Resolving eddies by local mesh refinement. Ocean Model. 93, 75–83 (2015)CrossRefGoogle Scholar
  31. Deardorff, J.W.: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng. 95(3), 429–438 (1973)CrossRefGoogle Scholar
  32. Duan, J., Nadiga, B.T.: Stochastic parameterization for large eddy simulation of geophysical flows. Proc. Am. Math. Soc. 135(4), 1187–1196 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Eden, C.: Parameterising meso-scale eddy momentum fluxes based on potential vorticity mixing and a gauge term. Ocean Model. 32(1–2), 58–71 (2010)CrossRefGoogle Scholar
  34. Eden, C.: Closing the energy cycle in an ocean model. Ocean Model. 101, 30–42 (2016)CrossRefGoogle Scholar
  35. Fjørtoft, R.: On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus 5(3), 225–230 (1953)MathSciNetCrossRefGoogle Scholar
  36. Foias, C., Holm, D.D., Titi, E.S.: The Navier-Stokes-alpha model of fluid turbulence. Phys. D 152/153, 505–519. Advances in nonlinear mathematics and science (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Foias, C., Holm, D.D., Titi, E.S.: The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14(1), 1–35 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  38. Fox-Kemper, B., Menemenlis, D.: Can large eddy simulation techniques improve mesoscale rich ocean models? In: Hecht, M.W., Hasumi, H. (eds.) Ocean Modeling in an Eddying Regime, pp. 319–337. American Geophysical Union (2008)Google Scholar
  39. Franzke, C., O’Kane, T., Berner, J., Williams, P., Lucarini, V.: Stochastic climate theory and modelling. WIREs Clim. Chang. 6, 63–78 (2015)CrossRefGoogle Scholar
  40. Franzke, C.L.E., Oliver, M., Rademacher, J.D.M., Badin, G.: Multi-scale methods for geophysical flows. This volume, Chapter 1 (2019)Google Scholar
  41. Frederiksen, J.S., Davies, A.G.: Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci. 54, 2475–2492 (1997)CrossRefGoogle Scholar
  42. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4(1), 47–66 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  43. Gassmann, A.: A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency. Q. J. Roy. Meteorol. Soc. 139, 152–175 (2013)CrossRefGoogle Scholar
  44. Gent, P.R.: The Gent-McWilliams parameterization: 20/20 hindsight. Ocean Model. 39(1–2), 2–9 (2011)CrossRefGoogle Scholar
  45. Gent, P.R., McWilliams, J.C.: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990)CrossRefGoogle Scholar
  46. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)zbMATHCrossRefGoogle Scholar
  47. Gilbert, A.D., Vanneste, J.: Geometric generalised Lagrangian-mean theories. J. Fluid Mech. 839, 95–134 (2018)MathSciNetCrossRefGoogle Scholar
  48. Gkioulekas, E., Tung, K.K.: A new proof on net upscale energy cascade in two-dimensional and quasi-geostrophic turbulence. J. Fluid Mech. 576, 173–189 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  49. Graham, J.P., Ringler, T.: A framework for the evaluation of turbulence closures used in mesoscale ocean large-eddy simulations. Ocean Model. 65, 25–39 (2013)CrossRefGoogle Scholar
  50. Grooms, I., Lee, Y., Majda, A.J.: Numerical schemes for stochastic backscatter in the inverse cascade of quasigeostrophic turbulence. Multiscale Model. Sim. 13(3), 1001–1021 (2015a)MathSciNetzbMATHCrossRefGoogle Scholar
  51. Grooms, I., Majda, A.J.: Efficient stochastic superparameterization for geophysical turbulence. Proc. Nat. Acad. Sci. 110, 4464–4469 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  52. Grooms, I., Majda, A.J.: Stochastic superparameterization in quasigeostrophic turbulence. J. Comput. Phys. 271 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  53. Grooms, I., Majda, A.J., Smith, K.S.: Stochastic superparameterization in a quasigeostrophic model of the Antarctic Circumpolar Current. Ocean Model. 85, 1–15 (2015b)CrossRefGoogle Scholar
  54. Grooms, I., Zanna, L.: A note on ‘Toward a stochastic parameterization of ocean mesoscale eddies’. Ocean Model. 113, 30–33 (2017)CrossRefGoogle Scholar
  55. Hallberg, R.: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model. 72, 92–103 (2013)CrossRefGoogle Scholar
  56. Hecht, M.W., Holm, D.D., Petersen, M.R., Wingate, B.A.: The LANS-\(\alpha \) and Leray turbulence parameterizations in primitive equation ocean modeling. J. Phys. A: Math. Theor. 41(34), 344009 (2008a)MathSciNetzbMATHCrossRefGoogle Scholar
  57. Hecht, M.W., Hunke, E., Maltrud, M., Petersen, M.R., Wingate, B.A.: Lateral mixing in the eddying regime and a new broad-ranging formulation. In: Hecht, M.W., Hasumi, H., (eds.) Ocean Modeling in an Eddying Regime, pp. 339–352. American Geophysical Union (2008b)Google Scholar
  58. Held, I.M., Larichev, V.D.: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta-plane. J. Atmos. Sci. 53, 946–952 (1996)CrossRefGoogle Scholar
  59. Holm, D.D.: Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion. Phys. D 133(1), 215–269 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  60. Holm, D.D.: Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics. Phys. D 170(3), 253–286 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  61. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137(1), 1–81 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  62. Holm, D.D., Nadiga, B.T.: Modeling mesoscale turbulence in the barotropic double-gyre circulation. J. Phys. Oceanogr. 33(11), 2355–2365 (2003)CrossRefGoogle Scholar
  63. Ilıcak, M., Adcroft, A.J., Griffies, S.M., Hallberg, R.W.: Spurious dianeutral mixing and the role of momentum closure. Ocean Model. 45, 37–58 (2012)CrossRefGoogle Scholar
  64. Jansen, M.F., Held, I.M.: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 36–48 (2014)CrossRefGoogle Scholar
  65. Jansen, M.F., Held, I.M., Adcroft, A.J., Hallberg, R.: Energy budget-based backscatter in an eddy permitting primitive equation model. Ocean Model. 94, 15–26 (2015)CrossRefGoogle Scholar
  66. Kitsios, V., Frederiksen, J., Zidikheri, M.: Scaling laws for parameterisations of subgrid eddy-eddy interactions in simulations of oceanic circulations. Ocean Model. 68, 88–105 (2013)CrossRefGoogle Scholar
  67. Kitsios, V., Frederiksen, J.S., and Zidikheri, M.J.: Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2018) (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  68. Kitsios, V., Frederiksen, J.S., Zidikheri, M.J.: Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models. Nonlinear Proc. Geophys. 23, 95–105 (2016)CrossRefGoogle Scholar
  69. Klein, P., Hua, B.L., Lapeyre, G., Capet, X., Le Gentil, S., Sasaki, H.: Upper-ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr. 38, 1748–1763 (2008)CrossRefGoogle Scholar
  70. Klingbeil, K., Burchard, H., Danilov, S., Goetz, C., Iske, A.: Reducing spurious diapycnal mixing in ocean models. This volume, Chapter 8 (2019)Google Scholar
  71. Korn, P.: Formulation of an unstructured grid model for global ocean dynamics. J. Comput. Phys. 339, 525–552 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  72. Kouranbaeva, S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  73. Kraichnan, R.H.: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5(4), 497–543 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  74. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967)MathSciNetCrossRefGoogle Scholar
  75. Lapeyre, G.: What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and a surface-trapped mode. J. Phys. Oceanogr. 39, 2857–2874 (2009)CrossRefGoogle Scholar
  76. Large, W.G., McWilliams, J.C., Doney, S.C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32(4), 363–403 (1994)CrossRefGoogle Scholar
  77. Leith, C.E.: Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671–673 (1968)CrossRefGoogle Scholar
  78. Leith, C.E.: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28, 145–161 (1971)zbMATHCrossRefGoogle Scholar
  79. Lunasin, E., Kurien, S., Taylor, M.A., Titi, E.S.: A study of the Navier-Stokes-\(\alpha \) model for two-dimensional turbulence. J. Turbul. 8, N30 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  80. Maltrud, M.E., Vallis, G.K.: Energy and enstrophy transfer in numerical simulations of two-dimensional turbulence. Phys. Fluids A 5(7), 1760–1775 (1993)CrossRefGoogle Scholar
  81. Mana, P.P., Zanna, L.: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Model. 79, 1–20 (2014)CrossRefGoogle Scholar
  82. Marsden, J.E., Shkoller, S.: Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-\(alpha \)) equations on bounded domains. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359(1784), 1449–1468 (2001)Google Scholar
  83. Marsden, J.E., Shkoller, S.: The anisotropic Lagrangian averaged Euler and Navier-Stokes equations. Arch. Ration. Mech. Anal. 166(1), 27–46 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  84. Marshall, D.P., Adcroft, A.J.: Parameterization of ocean eddies: potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Model. 32(3–4), 188–204 (2010)CrossRefGoogle Scholar
  85. Marshall, D.P., Maddison, J.R., Berloff, P.S.: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr. 42(4), 539–557 (2012)CrossRefGoogle Scholar
  86. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid Mech. 32(1), 1–32 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  87. Moffatt, H.: Note on the triad interactions of homogeneous turbulence. J. Fluid Mech. 741, R3 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  88. Mohammadi-Aragh, M., Klingbeil, K., Brüggemann, N., Eden, C., Burchard, H.: The impact of advection schemes on restratifiction due to lateral shear and baroclinic instabilities. Ocean Model. 94, 112–127 (2015)CrossRefGoogle Scholar
  89. Mohseni, K., Kosović, B., Shkoller, S., Marsden, J.E.: Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence. Phys. Fluids 15(2), 524–544 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  90. O’Kane, T.J., Frederiksen, J.S.: Statistical dynamical subgrid-scale parameterizations for geophysical flows. Phys. Scripta 2008(T132), 014033 (2008)CrossRefGoogle Scholar
  91. Oliver, M.: Lagrangian averaging with geodesic mean. Proc. R. Soc. A 473(2207), 20170558, 9 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  92. Oliver, M., Shkoller, S.: The vortex blob method as a second-grade non-Newtonian fluid. Commun. Partial Differ. Equ. 26(1–2), 295–314 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  93. Palmer, T., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G., Steinheimer, M., Weisheimer, A.: Stochastic parametrization and model uncertainty. Technical report, ECMWF (2009)Google Scholar
  94. Rhines, P.B.: Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975)zbMATHCrossRefGoogle Scholar
  95. Rhines, P.B.: The dynamics of unsteady currents. In: Goldberg, E.A., McCane, I.N., O’Brien, J.J., Steele, J.H. (eds.) The Sea, vol 6, pp. 189–318. J. Wiley (1977)Google Scholar
  96. Ringler, T., Gent, P.: An eddy closure for potential vorticity. Ocean Model. 39(1–2), 125–134 (2011)CrossRefGoogle Scholar
  97. Sadourny, R., Basdevant, C.: Parameterization of subgrid scale barotropic and baroclinic eddies in quasi-geostrophic models: anticipated potential vorticity method. J. Atmos. Sci. 42, 1353–1363 (1985)CrossRefGoogle Scholar
  98. Salmon, R.: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15(1), 167–211 (1980)CrossRefGoogle Scholar
  99. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press (1998)Google Scholar
  100. San, O.: A dynamic eddy-viscosity closure model for large eddy simulations of two-dimensional decaying turbulence. Int. J. Comput. Fluid D. 28, 363–382 (2014)MathSciNetCrossRefGoogle Scholar
  101. Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theor. Comput. Fluid Dyn. 18(6), 443–468 (2005)zbMATHCrossRefGoogle Scholar
  102. Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511–562 (1989)zbMATHCrossRefGoogle Scholar
  103. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4), 376–404 (1975)zbMATHCrossRefGoogle Scholar
  104. Schumann, U.: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn. 2(5–6), 279–290 (1991)zbMATHCrossRefGoogle Scholar
  105. Scott, R.B., Arbic, B.K.: Spectral energy fluxes in geostrophic turbulence: implications for ocean energetics. J. Phys. Oceanogr. 37, 673–688 (2007)MathSciNetCrossRefGoogle Scholar
  106. Smith, K.S., Boccaletti, G., Henning, C.C., Marinov, I.N., Tam, C.Y., Held, I.M., Vallis, G.K.: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech. 469, 13–48 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  107. Stone, P.H.: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci. 29, 405–418 (1972)CrossRefGoogle Scholar
  108. Taylor, G.I.: The spectrum of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 164(919), 476–490 (1938)zbMATHCrossRefGoogle Scholar
  109. Truesdell, C., Rajagopal, K.: An Introduction to the Mechanics of Fluids. Birkhäuser (1999)Google Scholar
  110. Umlauf, L., Burchard, H.: A generic length-scale equation for geophysical turbulence models. J. Marine Res. 61(2), 235–265 (2003)CrossRefGoogle Scholar
  111. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press (2006)Google Scholar
  112. von Storch, J.-S., Badin, G., Oliver, M.: The interior energy pathway: inertial gravity wave emission by oceanic flows. This volume Chapter 2 (2019)Google Scholar
  113. Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., Schröter, J.: The finite element sea ice–ocean model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7(2), 663–693 (2014)CrossRefGoogle Scholar
  114. Wunsch, C.: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr. 27, 1770–1794 (1997)CrossRefGoogle Scholar
  115. Xun, Q.-Q., Wang, B.-C.: A dynamic forcing scheme incorporating backscatter for hybrid simulation. Phys. Fluids 26(7), 075104 (2014)CrossRefGoogle Scholar
  116. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions. Basic Results, vol. 1. Springer (1987)Google Scholar
  117. Zanna, L., Mana, P.P., Anstey, J., David, T., Bolton, T.: Scale-aware deterministic and stochastic parametrizations of eddy-mean flow interaction. Ocean Model. 111, 66–80 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergey Danilov
    • 1
    • 2
  • Stephan Juricke
    • 2
  • Anton Kutsenko
    • 2
  • Marcel Oliver
    • 2
    Email author
  1. 1.Alfred Wegener Institute for Polar and Marine Research (AWI)BremerhavenGermany
  2. 2.Jacobs UniversityBremenGermany

Personalised recommendations