The Interior Energy Pathway: Inertia-Gravity Wave Emission by Oceanic Flows

  • Jin-Song von Storch
  • Gualtiero Badin
  • Marcel OliverEmail author
Part of the Mathematics of Planet Earth book series (MPE, volume 1)


We review the possible role of spontaneous emission and subsequent capture of internal gravity waves (IGWs) for dissipation in oceanic flows under conditions characteristic for the ocean circulation. Dissipation is necessary for the transfer of energy from the essentially balanced large-scale ocean circulation and mesoscale eddy fields down to smaller scales where instabilities and subsequent small-scale turbulence complete the route to dissipation. Spontaneous wave emission by flows is a viable route to dissipation. For quasi-balanced flows, characterized by a small Rossby number, the amplitudes of emitted waves are expected to be small. However, once being emitted into a three-dimensional eddying flow field, waves can undergo refraction and may be “captured.” During wave capture, the wavenumber grows exponentially, ultimately leading to breakup and dissipation. For flows with not too small Rossby number, e.g., for flows in the vicinity of strong fronts, dissipation occurs in a more complex manner. It can occur via spontaneous wave emission and subsequent wave capture, with the amplitudes of waves emitted in frontal systems being expected to be larger than amplitudes of waves emitted by quasi-balanced flows. It can also occur through turbulence and filamentation emerging from frontogenesis. So far, quantitative importance of this energy pathway—crucial for determining correct eddy viscosities in general circulation models—is not known. Toward an answer to this question, we discuss IGWs diagnostics, review spontaneous emission of both quasi-balanced and less-balanced frontal flows, and discuss recent numerical results based on a high-resolution ocean general circulation model.



We thank Tuba Masur for careful proof-reading of the manuscript. GB was partially supported by DFG grants FOR1740, BA-5068/8-1, and BA-5068/9-1. MO was partially supported by DFG grant OL-155/6-1.


  1. Allen, J.S., Holm, D.D., Newberger, P.A.: Toward an extended-geostrophic Euler-Poincaré model for mesoscale oceanographic flow. In: Norbury, J., Roulstone, I. (eds.) Large-Scale Atmosphere-Ocean Dynamics, vol. 1, pp. 101–125. Cambridge University Press (2002)Google Scholar
  2. Badin, G.: Surface semi-geostrophic dynamics in the ocean. Geophys. Astrophys. Fluid Dyn. 107(5), 526–540 (2013)MathSciNetGoogle Scholar
  3. Barth, J., Allen, J., Newberger, P.: On intermediate models for barotropic continental shelf and slope flow fields. Part II: Comparison of numerical model solutions in doubly periodic domains. J. Phys. Oceanogr. 20(7), 1044–1076 (1990)Google Scholar
  4. Blumen, W.: Geostrophic adjustment. Rev. Geophys. 10(2), 485–528 (1972)Google Scholar
  5. Bouchut, F., Sommer, J.L., Zeitlin, V.: Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations. J. Fluid Mech. 514, 35–63 (2004)MathSciNetzbMATHGoogle Scholar
  6. Broutman, D., Rottman, J.W., Eckermann, S.D.: Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech. 36, 233–253 (2004)MathSciNetzbMATHGoogle Scholar
  7. Bühler, O., McIntyre, M.E.: Wave capture and wave-vortex duality. J. Fluid Mech. 534, 67–95 (2005)MathSciNetzbMATHGoogle Scholar
  8. Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28(6), 1087–1095 (1971)Google Scholar
  9. Cho, H.R., Shepherd, T.G., Vladimirov, V.A.: Application of the direct liapunov method to the problem of symmetric stability in the atmosphere. J. Atmos. Sci. 50(6), 822–836 (1993)MathSciNetGoogle Scholar
  10. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)MathSciNetzbMATHGoogle Scholar
  11. Cotter, C.: Data assimilation on the exponentially accurate slow manifold. Philos. Trans. R. Soc. A 371(1991), 20120300 (2013)MathSciNetzbMATHGoogle Scholar
  12. Cotter, C.J., Reich, S.: Semigeostrophic particle motion and exponentially accurate normal forms. Multiscale Model. Simul. 5(2), 476–496 (2006)MathSciNetzbMATHGoogle Scholar
  13. Danioux, E., Vanneste, J., Klein, P., Sasaki, H.: Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid Mech. 699, 153–173 (2012)zbMATHGoogle Scholar
  14. Dritschel, D.G., Polvani, L.M., Mohebalhojeh, A.R.: The contour-advective semi-lagrangian algorithm for the shallow water equations. Mon. Weather Rev. 127(7), 1551–1565 (1999)Google Scholar
  15. Ford, R.: Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 281, 81–118 (1994)MathSciNetzbMATHGoogle Scholar
  16. Ford, R., McIntyre, M.E., Norton, W.A.: Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci. 57(9), 1236–1254 (2000)MathSciNetGoogle Scholar
  17. Ford, R., McIntyre, M.E., Norton, W.A.: Reply. J. Atmos. Sci. 59(19), 2878–2882 (2002)Google Scholar
  18. Franzke, C.L.E., Oliver, M., Rademacher, J.D.M., Badin, G.: Multi-scale methods for geophysical flows. This volume, Chapter 1 (2019)Google Scholar
  19. Gall, R.L., Williams, R.T., Clark, T.L.: Gravity waves generated during frontogenesis. J. Atmos. Sci. 45(15), 2204–2219 (1988)Google Scholar
  20. Gottwald, G.A., Mohamad, H., Oliver, M.: Optimal balance via adiabatic invariance of approximate slow manifolds. Multiscale Model. Simul. 15(4), 1404–1422 (2017)MathSciNetzbMATHGoogle Scholar
  21. Griffies, S.M., Winton, M., Anderson, W.G., Benson, R., Delworth, T.L., Dufour, C.O., Dunne, J.P., Goddard, P., Morrison, A.K., Rosati, A., Wittenberg, A.T., Yin, J., Zhang, R.: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Clim. 28(3), 952–977 (2015)Google Scholar
  22. Hoskins, B.J.: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32(2), 233–242 (1975)Google Scholar
  23. Hoskins, B.J., Bretherton, F.P.: Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29(1), 11–37 (1972)Google Scholar
  24. Jones, W.L.: Ray tracing for internal gravity waves. J. Geophys. Res. 74(8), 2028–2033 (1969)Google Scholar
  25. Klein, P., Treguier, A.M.: Dispersion of wind-induced inertial waves by a barotropic jet. J. Mar. Res. 53(1), 1–22 (1995)Google Scholar
  26. Kunze, E.: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15(5), 544–565 (1985)Google Scholar
  27. Kunze, E., Boss, E.: A model for vortex-trapped internal waves. J. Phys. Oceanogr. 28(10), 2104–2115 (1998)Google Scholar
  28. Le Sommer, J., Medvedev, S., Plougonven, R., Zeitlin, V.: Singularity formation during relaxation of jets and fronts toward the state of geostrophic equilibrium. J. Fluid Mech. 758, 287–311 (2014)zbMATHGoogle Scholar
  29. Le Sommer, J., Reznik, G.M., Zeitlin, V.: Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane. J. Fluid Mech. 515, 135–170 (2004)MathSciNetzbMATHGoogle Scholar
  30. Lee, M.-M., Nurser, A.J.G., Coward, A.C., de Cuevas, B.A.: Eddy advective and diffusive transports of heat and salt in the southern ocean. J. Phys. Oceanogr. 37(5), 1376–1393 (2007)Google Scholar
  31. Li, H., von Storch, J.-S.: On the fluctuating buoyancy fluxes simulated in a OGCM. J. Phys. Oceanogr. 43(7), 1270–1287 (2013)Google Scholar
  32. Li, Z., von Storch, J.-S., Müller, M.: The \(\text{ M }_2\) internal tide simulated by a \(1/10^\circ \) OGCM. J. Phys. Oceanogr. 45(12), 3119–3135 (2015)Google Scholar
  33. Lighthill, M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 211(1107), 564–587 (1952)Google Scholar
  34. Llewellyn Smith, S.G.: Near-inertial oscillations of a barotropic vortex: trapped modes and time evolution. J. Phys. Oceanogr. 29(4), 747–761 (1999)MathSciNetGoogle Scholar
  35. Lott, F., Plougonven, R., Vanneste, J.: Gravity waves generated by sheared potential vorticity anomalies. J. Atmos. Sci. 67(1), 157–170 (2010)Google Scholar
  36. Lott, F., Plougonven, R., Vanneste, J.: Gravity waves generated by sheared three-dimensional potential vorticity anomalies. J. Atmos. Sci. 69(7), 2134–2151 (2012)Google Scholar
  37. Maltrud, M., Bryan, F., Peacock, S.: Boundary impulse response functions in a century-long eddying global ocean simulation. Environ. Fluid Mech. 10(1–2), 275–295 (2010)Google Scholar
  38. Maltrud, M.E., McClean, J.L.: An eddy resolving global 1/10\(^{\circ }\) ocean simulation. Ocean Model. 8(1–2), 31–54 (2005)Google Scholar
  39. Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., Yamagata, T.: A fifty-year eddy-resolving simulation of the world ocean—preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator 1, 35–56 (2004)Google Scholar
  40. McIntyre, M.:. Dynamical meteorology—balanced flow. In: Pyle, J., Zhang, F. (eds.) Encyclopedia of Atmospheric Sciences, pp. 298–303, 2nd edn. Academic Press, Oxford (2015)Google Scholar
  41. McIntyre, M.E.: Spontaneous imbalance and hybrid vortex-gravity structures. J. Atmos. Sci. 66, 1315–1326 (2009)Google Scholar
  42. McIntyre, M.E., Norton, W.A.: Potential vorticity inversion on a hemisphere. J. Atmos. Sci. 57(9), 1214–1235 (2000)MathSciNetGoogle Scholar
  43. McIntyre, M.E., Roulstone, I.: Are there higher-accuracy analogues of semi-geostrophic theory? In: Norbury, J., Roulstone, I. (eds.) Large-Scale Atmosphere-Ocean Dynamics, vol. 2, pp. 301–364. Cambridge University Press (2002)Google Scholar
  44. Medvedev, S.B., Zeitlin, V.: Weak turbulence of short equatorial waves. Phys. Lett. A 342(3), 217–227 (2005)zbMATHGoogle Scholar
  45. Mohebalhojeh, A.R., Dritschel, D.G.: Hierarchies of balance conditions for the \(f\)-plane shallow-water equations. J. Atmos. Sci. 58(16), 2411–2426 (2001)MathSciNetGoogle Scholar
  46. Müller, P., McWilliams, J.C., Molemaker, M.J.: Routes to dissipation in the ocean: the 2D/3D turbulence conundrum. In: Baumert, H.Z., Simpson, J., Sündermann, J. (eds.) Marine Turbulence, pp. 397–405. Cambridge University Press (2005)Google Scholar
  47. Muraki, D.J., Snyder, C., Rotunno, R.: The next-order corrections to quasigeostrophic theory. J. Atmos. Sci. 56(11), 1547–1560 (1999)MathSciNetGoogle Scholar
  48. Nadiga, B.T.: Nonlinear evolution of a baroclinic wave and imbalanced dissipation. J. Fluid Mech. 756, 965–1006 (2014)MathSciNetGoogle Scholar
  49. Nagai, T., Tandon, A., Kunze, E., Mahadevan, A.: Spontaneous generation of near-inertial waves by the Kuroshio front. J. Phys. Oceanogr. 45(9), 2381–2406 (2015)Google Scholar
  50. Nikurashin, M., Ferrari, R.: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett. 38(8), L08610 (2011)Google Scholar
  51. Nikurashin, M., Vallis, G.K., Adcroft, A.: Routes to energy dissipation for geostrophic flows in the southern ocean. Nat. Geosci. 6(1), 48–51 (2013)Google Scholar
  52. Obukhov, A.: On the problem of geostrophic wind. Izv. AN SSSR Geogr. Geophys. Ser. 13, 281–286 (1949)Google Scholar
  53. Olbers, D., Willebrand, J., Eden, C.: Ocean Dynamics. Springer (2012)Google Scholar
  54. Oliver, M., Vasylkevych, S.: Generalized large-scale semigeostrophic approximations for the \(f\)-plane primitive equations. J. Phys. A: Math. Theor. 49, 184001 (2016)MathSciNetzbMATHGoogle Scholar
  55. O’Sullivan, D., Dunkerton, T.J.: Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci. 52, 3695–3716 (1995)Google Scholar
  56. Plougonven, R., Snyder, C.: Gravity waves excited by jets: propagation versus generation. Geophys. Res. Lett. 32(18), L18802 (2005)Google Scholar
  57. Plougonven, R., Snyder, C.: Inertia-gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles. J. Atmos. Sci. 64(7), 2502–2520 (2007)Google Scholar
  58. Plougonven, R., Zeitlin, V.: Lagrangian approach to geostrophic adjustment of frontal anomalies in a stratified fluid. Geophys. Astrophys. Fluid Dyn. 99(2), 101–135 (2005)MathSciNetzbMATHGoogle Scholar
  59. Plougonven, R., Zhang, F.: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys. 52(1), 33–76 (2014)Google Scholar
  60. Ragone, F., Badin, G.: A study of surface semi-geostrophic turbulence: freely decaying dynamics. J. Fluid Mech. 792, 740–774 (2016)MathSciNetzbMATHGoogle Scholar
  61. Reznik, G.M., Zeitlin, V., Jelloul, M.B.: Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model. J. Fluid Mech. 445, 93–120 (2001)MathSciNetzbMATHGoogle Scholar
  62. Rossby, C.-G.: On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Mar. Res. 1(3), 239–263 (1938)Google Scholar
  63. Salmon, R.: New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461–477 (1985)zbMATHGoogle Scholar
  64. Salmon, R.: Large-scale semigeostrophic equations for use in ocean circulation models. J. Fluid Mech. 318, 85–105 (1996)MathSciNetzbMATHGoogle Scholar
  65. Saujani, S., Shepherd, T.G.: Comments on “balance and the slow quasimanifold: some explicit results”. J. Atmos. Sci. 59(19), 2874–2877 (2002)Google Scholar
  66. Snyder, C., Muraki, D.J., Plougonven, R., Zhang, F.: Inertia-gravity waves generated within a dipole vortex. J. Atmos. Sci. 64(12), 4417–4431 (2007)Google Scholar
  67. Snyder, C., Plougonven, R., Muraki, D.J.: Mechanisms for spontaneous gravity wave generation within a dipole vortex. J. Atmos. Sci. 66(11), 3464–3478 (2009)Google Scholar
  68. Thomas, L.N.: On the effects of frontogenetic strain on symmetric instability and inertia-gravity waves. J. Fluid Mech. 711, 620–640 (2012)MathSciNetzbMATHGoogle Scholar
  69. van Haren, H.: On the polarization of oscillatory currents in the Bay of Biscay. J. Geophys. Res. Oceans 108(C9), 3290 (2003)Google Scholar
  70. Vanneste, J.: Exponential smallness of inertia-gravity wave generation at small Rossby number. J. Atmos. Sci. 65(5), 1622–1637 (2008)Google Scholar
  71. Vanneste, J.: Balance and spontaneous wave generation in geophysical flows. Ann. Rev. Fluid Mech. 45(1), 147–172 (2013)MathSciNetzbMATHGoogle Scholar
  72. Vanneste, J., Yavneh, I.: Exponentially small inertia-gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci. 61(2), 211–223 (2004)MathSciNetGoogle Scholar
  73. Vanneste, J., Yavneh, I.: Unbalanced instabilities of rapidly rotating stratified shear flows. J. Fluid Mech. 584, 373–396 (2007)MathSciNetzbMATHGoogle Scholar
  74. Viúdez, A.: Spiral patterns of inertia-gravity waves in geophysical flows. J. Fluid Mech. 562, 73–82 (2006)MathSciNetzbMATHGoogle Scholar
  75. Viúdez, Á.: The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles. J. Fluid Mech. 593, 359–383 (2007)MathSciNetzbMATHGoogle Scholar
  76. Viúdez, A., Dritschel, D.G.: Optimal potential vorticity balance of geophysical flows. J. Fluid Mech. 521, 343–352 (2004)MathSciNetzbMATHGoogle Scholar
  77. Viúdez, A., Dritschel, D.G.: Spontaneous generation of inertia-gravity wave packets by balanced geophysical flows. J. Fluid Mech. 553, 107–117 (2006)MathSciNetzbMATHGoogle Scholar
  78. von Storch, H., Zwiers, F.W.: Statistical Analysis in Climate Research, p. 484. Cambridge University Press (1999)Google Scholar
  79. von Storch, J.-S., Eden, C., Fast, I., Haak, H., Hernández-Deckers, D., Maier-Reimer, E., Marotzke, J., Stammer, D.: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr. 42(12), 2185–2205 (2012)Google Scholar
  80. Wang, S., Zhang, F.: Source of gravity waves within a vortex-dipole jet revealed by a linear model. J. Atmos. Sci. 67(5), 1438–1455 (2010)Google Scholar
  81. Wang, S., Zhang, F., Snyder, C.: Generation and propagation of inertia-gravity waves from vortex dipoles and jets. J. Atmos. Sci. 66(5), 1294–1314 (2009)Google Scholar
  82. Xing, J., Davies, A.M.: On the influence of a surface coastal front on near-inertial wind-induced internal wave generation. J. Geophys. Res. Oceans 109(C1), C01023 (2004)Google Scholar
  83. Zeitlin, V.: Lagrangian dynamics of fronts, vortices and waves: understanding the (semi-) geostrophic adjustment. In: Fronts, Waves and Vortices in Geophysical Flows, pp. 109–137. Springer (2010)Google Scholar
  84. Zeitlin, V., Medvedev, S.B., Plougonven, R.: Frontal geostrophic adjustment, slow manifold and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 1. Theory. J. Fluid Mech. 481, 269–290 (2003)MathSciNetzbMATHGoogle Scholar
  85. Zhang, F.: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci. 61(4), 440–457 (2004)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jin-Song von Storch
    • 1
  • Gualtiero Badin
    • 2
  • Marcel Oliver
    • 3
    Email author
  1. 1.Max-Planck-Institut für Meteorologie (MPI-M)HamburgGermany
  2. 2.Center for Earth System Research and Sustainability (CEN), Universität HamburgHamburgGermany
  3. 3.Jacobs UniversityBremenGermany

Personalised recommendations