Skip to main content

Restoration of Finger and Arm Movements Using Hybrid Brain/Neural Assistive Technology in Everyday Life Environments

Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Controlling advanced robotic systems with brain signals promises substantial improvements in health care, for example, to restore intuitive control of hand movements after severe stroke or spinal cord injuries (SCI). However, such integrated, brain- or neural-controlled robotic systems have yet to enter broader clinical use or daily life environments. The main challenge to integrate such systems in everyday life environments relates to the reliability of brain-control, particularly when brain signals are recorded non-invasively. Using a non-invasive, hybrid EEG-EOG-based brain/neural hand exoskeleton (B/NHE), we demonstrate full restoration of activities of daily living (ADL), such as eating and drinking, across six paraplegic individuals (five males, 30 ± 14 years) outside the laboratory. In a second set of experiments, we show that even whole-arm exoskeleton control is feasible and safe by combining hybrid brain/neural control with vision-guided and context-sensitive autonomous robotics. Given that recent studies indicate neurological recovery after chronic stroke or SCI when brain-controlled assistive technology is repeatedly used for 1–12 months, we suggest that combining an assistive and rehabilitative approach may further promote brain-machine interface (BMI) technology as a standard therapy option after stroke and SCI. In such scenario, brain/neural-assistive technology would not only have an immediate impact on the quality of life and autonomy of individuals with brain or spinal cord lesions but would also foster neurological recovery by stimulating functional and structural neuroplasticity.

Keywords

  • Brain/neural hand exoskeleton (B/NHE)
  • Spinal cord injury (SCI)
  • Stroke
  • Activities of daily living (ADL)
  • Neural recovery

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05668-1_5
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-05668-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1

(From Ref. [21], Science Robotics)

Fig. 2

Notes

  1. 1.

    https://www.youtube.com/watch?v=zs5k7MpS1g0.

References

  1. N. Birbaumer, L.G. Cohen, Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579, 621–636 (2007)

    CrossRef  Google Scholar 

  2. G.L. Birbeck, M.G. Hanna, R.C. Griggs, Global opportunities and challenges for clinical neuroscience. JAMA 311, 1609–1610 (2014)

    CrossRef  Google Scholar 

  3. D. Broetz, C. Braun, C. Weber, S.R. Soekadar, A. Caria, N. Birbaumer, Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabilitation and Neural Repair 24, 674–679 (2010)

    CrossRef  Google Scholar 

  4. E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S.R. Soekadar, A. Fourkas, N. Birbaumer, Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)

    CrossRef  Google Scholar 

  5. A. Caria, C. Weber, D. Brötz, A. Ramos, L.F. Ticini, A. Gharabaghi, C. Braun, N. Birbaumer, Chronic stroke recovery after combined BCI training and physiotherapy: a case report. J. Psychophysiol. 48, 578–582 (2011)

    CrossRef  Google Scholar 

  6. M.A. Cervera, S.R. Soekadar, J. Ushiba, J.D.R. Millán, M. Liu, N. Birbaumer, G. Garipelli, Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5, 651–663 (2018)

    CrossRef  Google Scholar 

  7. J. Clausen, E. Fetz, J. Donoghue, J. Ushiba, U. Spörhase, J. Chandler, N. Birbaumer, S.R. Soekadar, Help, hope and hype: ethical dimensions of neuroprosthetics. Science 356, 1338–1339 (2017)

    CrossRef  Google Scholar 

  8. S. Crea, M. Nann, E. Trigili, F. Cordella, A. Baldoni, F.J. Badesa, J.M. Catalan, L. Zollo, N. Vitiello, N.G. Aracil, S.R. Soekadar, Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Sci. Rep. 8, 10823 (2018)

    Google Scholar 

  9. J.L. Collinger, B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, A.J. McMorland, M. Velliste, M.L. Boninger, A.B. Schwartz, High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013)

    CrossRef  Google Scholar 

  10. B.H. Dobkin, Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579, 637–642 (2007)

    CrossRef  Google Scholar 

  11. A.R. Donati, S. Shokur, E. Morya, D.S. Campos, R.C. Moioli, C.M. Gitti, P.B. Augusto, S. Tripodi, C.G. Pires, G.A. Pereira, F.L. Brasil, S. Gallo, A.A. Lin, A.K. Takigami, M.A. Aratanha, S. Joshi, H. Bleuler, G. Cheng, A. Rudolph, M.A. Nicolelis, Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6, 30383 (2016)

    CrossRef  Google Scholar 

  12. V.L. Feigin, M.H. Forouzanfar, R. Krishnamurthi, G.A. Mensah, M. Connor, D.A. Bennett et al., Global and regional burden of stroke in 1990–2010: findings from the global burden of disease study 2010. Lancet 382, 1–12 (2013)

    Google Scholar 

  13. L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, J.P. Donoghue, Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    CrossRef  Google Scholar 

  14. M.E. Johanson, J.P. Jaramillo, C.A. Dairaghi, W.M. Murray, V.R. Hentz, Multicenter survey of the effects of rehabilitation practices on pinch force strength after tendon transfer to restore pinch in tetraplegia. Arch. Phys. Med. Rehabil. 97(6 Suppl), S105–S116 (2016)

    CrossRef  Google Scholar 

  15. A. Ramos-Murguialday, D. Broetz, M. Rea, L. Läer, O. Yilmaz, F.L. Brasil, G. Liberati, M.R. Curado, E. Garcia Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S.R. Soekadar, A. Caria, L.G. Cohen, N. Birbaumer, Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013)

    CrossRef  Google Scholar 

  16. K. Ruddy, J. Balsters, D. Mantini, Q. Liu, P. Kassraian-Fard, N. Enz, E. Mihelj, B. Subhash Chander, S.R. Soekadar, N. Wenderoth, Neural activity related to volitional regulation of cortical excitability. Elife 7, e40843 (2018)

    Google Scholar 

  17. S.R. Soekadar, M. Witkowski, J. Mellinger, A. Ramos Murguialday, N. Birbaumer, L.G. Cohen, ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 542–549 (2011)

    CrossRef  Google Scholar 

  18. S.R. Soekadar, N. Birbaumer, M.W. Slutzky, L.G. Cohen, Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015)

    CrossRef  Google Scholar 

  19. S.R. Soekadar, M. Witkowski, N. Vitiello, N. Birbaumer, An EEG/EOG-based hybrid brain- neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomed. Tech. 60, 199–205 (2015)

    CrossRef  Google Scholar 

  20. S.R. Soekadar, L.G. Cohen, N. Birbaumer, Clinical brain-machine interfaces, in Plasticity of cognition in neurologic disorders, ed. by J. Tracy, B. Hampstead, K. Sathian (Oxford University Press, New York, 2015), pp. 347–362

    Google Scholar 

  21. S.R. Soekadar, M. Witkowski, C. Gómez, E. Opisso, J. Medina, M. Cortese, M. Cempini, M.C. Carozza, L.G. Cohen, N. Birbaumer, N. Vitiello, Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1, eaag3296 (2016)

    CrossRef  Google Scholar 

  22. S. Toyama, K. Takano, K. Kansaku, A nonadhesive solid-gel electrode for a non-invasive brain–machine interface. Front. Neurol. 3, 114 (2012)

    CrossRef  Google Scholar 

  23. H. Wang, Y. Li, J. Long, T. Yu, Z. Gu, An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface. Cognit. Neurodyn. 8, 399–409 (2014)

    CrossRef  Google Scholar 

  24. WHO: World health report, Geneva, World Health Organization (2012)

    Google Scholar 

  25. M. Witkowski, M. Cortese, M. Cempini, J. Mellinger, N. Vitiello, S.R. Soekadar, Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). J. Neuroeng. Rehabil. 11, 165 (2014)

    CrossRef  Google Scholar 

  26. S.L. Wolf, C.J. Winstein, J.P. Miller et al., The EXCITE investigators. Effect of constraint-induced movement therapy on upper extremity function 3–9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104 (2006)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This chapter and the presented studies were supported by the European Commission under the project AIDE (G.A. no: 645322), the European Research Council (ERC) under the project NGBMI (759370), and the Baden-Württemberg Stiftung (NEU007/1). SRS received special support by the Brain & Behavior Research Foundation as 2017 NARSAD Young Investigator Grant recipient and P&S Fund Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjo R. Soekadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Soekadar, S.R. et al. (2019). Restoration of Finger and Arm Movements Using Hybrid Brain/Neural Assistive Technology in Everyday Life Environments. In: Guger, C., Mrachacz-Kersting, N., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-05668-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05668-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05667-4

  • Online ISBN: 978-3-030-05668-1

  • eBook Packages: Computer ScienceComputer Science (R0)