N. Birbaumer, L.G. Cohen, Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579, 621–636 (2007)
CrossRef
Google Scholar
G.L. Birbeck, M.G. Hanna, R.C. Griggs, Global opportunities and challenges for clinical neuroscience. JAMA 311, 1609–1610 (2014)
CrossRef
Google Scholar
D. Broetz, C. Braun, C. Weber, S.R. Soekadar, A. Caria, N. Birbaumer, Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabilitation and Neural Repair 24, 674–679 (2010)
CrossRef
Google Scholar
E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S.R. Soekadar, A. Fourkas, N. Birbaumer, Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)
CrossRef
Google Scholar
A. Caria, C. Weber, D. Brötz, A. Ramos, L.F. Ticini, A. Gharabaghi, C. Braun, N. Birbaumer, Chronic stroke recovery after combined BCI training and physiotherapy: a case report. J. Psychophysiol. 48, 578–582 (2011)
CrossRef
Google Scholar
M.A. Cervera, S.R. Soekadar, J. Ushiba, J.D.R. Millán, M. Liu, N. Birbaumer, G. Garipelli, Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5, 651–663 (2018)
CrossRef
Google Scholar
J. Clausen, E. Fetz, J. Donoghue, J. Ushiba, U. Spörhase, J. Chandler, N. Birbaumer, S.R. Soekadar, Help, hope and hype: ethical dimensions of neuroprosthetics. Science 356, 1338–1339 (2017)
CrossRef
Google Scholar
S. Crea, M. Nann, E. Trigili, F. Cordella, A. Baldoni, F.J. Badesa, J.M. Catalan, L. Zollo, N. Vitiello, N.G. Aracil, S.R. Soekadar, Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Sci. Rep. 8, 10823 (2018)
Google Scholar
J.L. Collinger, B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, A.J. McMorland, M. Velliste, M.L. Boninger, A.B. Schwartz, High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013)
CrossRef
Google Scholar
B.H. Dobkin, Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579, 637–642 (2007)
CrossRef
Google Scholar
A.R. Donati, S. Shokur, E. Morya, D.S. Campos, R.C. Moioli, C.M. Gitti, P.B. Augusto, S. Tripodi, C.G. Pires, G.A. Pereira, F.L. Brasil, S. Gallo, A.A. Lin, A.K. Takigami, M.A. Aratanha, S. Joshi, H. Bleuler, G. Cheng, A. Rudolph, M.A. Nicolelis, Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6, 30383 (2016)
CrossRef
Google Scholar
V.L. Feigin, M.H. Forouzanfar, R. Krishnamurthi, G.A. Mensah, M. Connor, D.A. Bennett et al., Global and regional burden of stroke in 1990–2010: findings from the global burden of disease study 2010. Lancet 382, 1–12 (2013)
Google Scholar
L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, J.P. Donoghue, Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)
CrossRef
Google Scholar
M.E. Johanson, J.P. Jaramillo, C.A. Dairaghi, W.M. Murray, V.R. Hentz, Multicenter survey of the effects of rehabilitation practices on pinch force strength after tendon transfer to restore pinch in tetraplegia. Arch. Phys. Med. Rehabil. 97(6 Suppl), S105–S116 (2016)
CrossRef
Google Scholar
A. Ramos-Murguialday, D. Broetz, M. Rea, L. Läer, O. Yilmaz, F.L. Brasil, G. Liberati, M.R. Curado, E. Garcia Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S.R. Soekadar, A. Caria, L.G. Cohen, N. Birbaumer, Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013)
CrossRef
Google Scholar
K. Ruddy, J. Balsters, D. Mantini, Q. Liu, P. Kassraian-Fard, N. Enz, E. Mihelj, B. Subhash Chander, S.R. Soekadar, N. Wenderoth, Neural activity related to volitional regulation of cortical excitability. Elife 7, e40843 (2018)
Google Scholar
S.R. Soekadar, M. Witkowski, J. Mellinger, A. Ramos Murguialday, N. Birbaumer, L.G. Cohen, ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 542–549 (2011)
CrossRef
Google Scholar
S.R. Soekadar, N. Birbaumer, M.W. Slutzky, L.G. Cohen, Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015)
CrossRef
Google Scholar
S.R. Soekadar, M. Witkowski, N. Vitiello, N. Birbaumer, An EEG/EOG-based hybrid brain- neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomed. Tech. 60, 199–205 (2015)
CrossRef
Google Scholar
S.R. Soekadar, L.G. Cohen, N. Birbaumer, Clinical brain-machine interfaces, in Plasticity of cognition in neurologic disorders, ed. by J. Tracy, B. Hampstead, K. Sathian (Oxford University Press, New York, 2015), pp. 347–362
Google Scholar
S.R. Soekadar, M. Witkowski, C. Gómez, E. Opisso, J. Medina, M. Cortese, M. Cempini, M.C. Carozza, L.G. Cohen, N. Birbaumer, N. Vitiello, Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1, eaag3296 (2016)
CrossRef
Google Scholar
S. Toyama, K. Takano, K. Kansaku, A nonadhesive solid-gel electrode for a non-invasive brain–machine interface. Front. Neurol. 3, 114 (2012)
CrossRef
Google Scholar
H. Wang, Y. Li, J. Long, T. Yu, Z. Gu, An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface. Cognit. Neurodyn. 8, 399–409 (2014)
CrossRef
Google Scholar
WHO: World health report, Geneva, World Health Organization (2012)
Google Scholar
M. Witkowski, M. Cortese, M. Cempini, J. Mellinger, N. Vitiello, S.R. Soekadar, Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). J. Neuroeng. Rehabil. 11, 165 (2014)
CrossRef
Google Scholar
S.L. Wolf, C.J. Winstein, J.P. Miller et al., The EXCITE investigators. Effect of constraint-induced movement therapy on upper extremity function 3–9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104 (2006)
CrossRef
Google Scholar