Skip to main content

Pseudo-differential Operators Associated to General Type I Locally Compact Groups

  • Conference paper
  • First Online:
Analysis and Partial Differential Equations: Perspectives from Developing Countries

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 275))

Abstract

In a recent paper by M. Măntoiu and M. Ruzhansky, a global pseudo-differential calculus has been developed for unimodular groups of type I. In the present article we generalize the main results to arbitrary locally compact groups of type I. Our methods involve the use of Plancherel’s theorem for non-unimodular groups. We also make connections with a \(C^*\)-algebraic formalism, involving dynamical systems, and give explicit constructions for the group of affine transformations of the real line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahouri, H., Fermanian-Kammerer, C., Gallagher, I.: Phase space analysis and pseudo-differential calculus on the Heisenberg group. Astérisque 342 (2012)

    Google Scholar 

  2. Bruhat, F.: Distributions sur un groupe localement compact et applications a l’étude des représentations des groupes \(p\)-adiques. Bull. Soc. Math. France 89, 43–75 (1961)

    Article  MathSciNet  Google Scholar 

  3. Bustos, H., Măntoiu, M.: Twisted pseudo-differential operators on type I locally compact groups. Illinois J. Math. 60(2), 365–390 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Christ, M., Geller, D., Glowacki, P., Polin, L.: Pseudo-differential operators on groups with dilations. Duke Math. J. 68(1), 31–65 (1992)

    Article  MathSciNet  Google Scholar 

  5. Delgado, J., Ruzhansky, M.: \(L^p\)-nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups. J. Math. Pures Appl. 102(1), 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  6. Derighetti, A.: Convolution Operators on Groups. Lecture Notes of the Unione Matematica Italiana, vol. 11, Springer, Heidelberg; UMI, Bologna (2011)

    Book  Google Scholar 

  7. Dixmier, J.: Les \(C^*\)-algébres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Cie, Paris (1964)

    Google Scholar 

  8. Duflo, M., Moore, C.C.: On the regular representation of a nonunimodular locally compact group. J. Funct. Anal. 21(2), 209–243 (1976)

    Article  MathSciNet  Google Scholar 

  9. Fischer, V., Ruzhansky, M.: Quantization on Nilpotent Lie Groups. Progress in Mathematics. Birkhäuser, Basel (2016)

    Google Scholar 

  10. Folland, G.B.: A Course in Abstract Harmonic Analysis, 2nd edn. Textbooks in Mathematics. CRC Press, Boca Raton, FL (2016)

    Google Scholar 

  11. Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Lecture Notes in Mathematics, vol. 1863. Springer-Verlag, Berlin (2005)

    Google Scholar 

  12. Glowacki, P.: Invertibility of convolution operators on homogeneous groups. Rev. Mat. Iberoam. 28(1), 141–156 (2012)

    Article  MathSciNet  Google Scholar 

  13. Glowacki, P.: The Melin calculus for general homogeneous groups. Ark. Mat. 45(1), 31–48 (2007)

    Article  MathSciNet  Google Scholar 

  14. Iftimie, V., Măntoiu, M., Purice, R.: Magnetic pseudo-differential operators. Publ. RIMS. 43, 585–623 (2007)

    Article  Google Scholar 

  15. Mackey, G.W.: The Theory of Unitary Group Representations. University of Chicago Press, Chicago, London (1976)

    MATH  Google Scholar 

  16. Măntoiu, M.: Essential spectrum and Fredholm properties for operators on locally compact groups. J. Oper. Theory 77(2), 481–501 (2017)

    Article  MathSciNet  Google Scholar 

  17. Melin, A.: Parametrix constructions for right invariant differential operators on nilpotent groups. Ann. Global Anal. Geom. 1(1), 79–130 (1983)

    Article  MathSciNet  Google Scholar 

  18. Măntoiu, M., Purice, R.: The magnetic Weyl calculus. J. Math. Phys. 45(4), 1394–1417 (2004)

    Article  MathSciNet  Google Scholar 

  19. Măntoiu, M., Purice, R., Richard, S.: Spectral and propagation results for magnetic Schrödinger operators; A \(C^*\)-algebraic framework. J. Funct. Anal. 250, 42–67 (2007)

    Article  MathSciNet  Google Scholar 

  20. Măntoiu, M., Ruzhansky, M.: Pseudo-differential operators, Wigner transform and Weyl systems on type I locally compact groups. Doc, Math (2017)

    Google Scholar 

  21. Măntoiu, M., Ruzhansky, M.: Quantizations on nilpotent Lie groups and algebras having flat coadjoint orbits, Preprint ArXiV and submitted

    Google Scholar 

  22. Ruzhansky, M. and Turunen, V.: Pseudo-differential Operators and Symmetries Pseudo-differential Operators. Theory and Applications, vol. 2. Birkhäuser, Basel (2010)

    Chapter  Google Scholar 

  23. Ruzhansky, M., Turunen, V.: Quantization of pseudo-differential operators on the torus. J. Fourier Anal. Appl. 16, 943–982 (2010)

    Article  MathSciNet  Google Scholar 

  24. Ruzhansky, M., Turunen, V.: Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces. Int. Math. Res. Not. IMRN 11, 2439–2496 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ruzhansky, M., Turunen, V., Wirth, J.: Hörmander-class of pseudo-differential operators on compact Lie groups and global hypoellipticity. J. Fourier Anal. Appl. 20, 476–499 (2014)

    Article  MathSciNet  Google Scholar 

  26. Ruzhansky, M., Wirth, J.: Global functional calculus for operators on compact Lie groups. J. Funct. Anal. 267, 144–172 (2014)

    Article  MathSciNet  Google Scholar 

  27. Tatsuuma, N.: Plancherel formula for non-unimodular locally compact groups. J. Math. Kyoto Univ. 12, 179–261 (1972)

    Article  MathSciNet  Google Scholar 

  28. Taylor, M.E.: Pseudo-differential Operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton, NJ (1981)

    Google Scholar 

  29. Taylor, M.E.: Noncommutative Microlocal Analysis I. American Mathematical Soc., vol. 52, no. 313 (1984)

    Google Scholar 

  30. Williams, D.P.: Crossed Products of \(C^*\)-Algebras, Mathematical Surveys and Monographs, vol. 34. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

Download references

Acknowledgement

M. Sandoval has been supported by Beca de Magister Nacional 2016 Conicyt and partially supported by Núcleo Milenio de Física Matemática RC120002. M. Măntoiu is supported by the Fondecyt Project 1160359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Măntoiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Măntoiu, M., Sandoval, M. (2019). Pseudo-differential Operators Associated to General Type I Locally Compact Groups. In: Delgado, J., Ruzhansky, M. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries. Springer Proceedings in Mathematics & Statistics, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-030-05657-5_11

Download citation

Publish with us

Policies and ethics