Skip to main content

Fundamental Concepts

  • Chapter
  • First Online:
Book cover Quadratic Forms

Abstract

Throughout the chapter we introduce important concepts as well as basic results: given an integral quadratic form \(q:\mathbb {Z}^n \to \mathbb {Z}\), numbers of the form q(v) for a vector v in \(\mathbb {Z}^n\) are said to be represented by q, and the form q is said to be universal if every positive integer is represented by q. We sketch the proof of Conway and Schneeberger’s Fifteen Theorem, which states that a positive integral form with associated symmetric matrix having integer coefficients is universal if and only if it represents all positive integers up to 15. We also survey the theory of binary integral quadratic forms (due originally to Gauss), and apply it to specific examples referred to as Kronecker and Pell forms. Finally, we find general conditions for a real quadratic form \(q_{\mathbb {R}}:\mathbb {R}^n \to \mathbb {R}\) to be positive (that is, \(q_{\mathbb {R}}(x)>0\) for any nonzero vector x) or nonnegative (\(q_{\mathbb {R}}(x)\geq 0\) for any vector x in \(\mathbb {R}^n\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbeau, E.J.: Pell’s Equation. Problem Books in Mathematics. Springer, New York (2003)

    Book  Google Scholar 

  2. Bhargava, M.: On the Conway–Schneeberger fifteen theorem. In: Quadratic Forms and Their Applications (Dublin, 1999). Contemporary Mathematics, vol. 272. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  3. Birkhoff, G.: Linear Transformations with Invariants Cones. Am. Math. Mon. 74, 274–276 (1967)

    MathSciNet  MATH  Google Scholar 

  4. Brechenmacher, F.: Lagrange and the secular equation. Lett. Mat. Int. 2, 79 (2014). https://doi.org/10.1007/s40329-014-0051-3

    Article  MathSciNet  Google Scholar 

  5. Brechenmacher, F.: Algebraic generality vs arithmetic generality in the 1874 controversy between C. Jordan and L. Kronecker. In: Chemla, K., Chorlay, R., Rabouin, D. (eds.) The Oxford Handbook of Generality in Mathematics and the Sciences. Oxford University Press, Oxford (2016)

    Google Scholar 

  6. Buell, D.A.: Binary Quadratic Forms, Classical Theory and Modern Computations. Springer, New York (1989)

    Google Scholar 

  7. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 5th edn. Chapman and Hall/CRC Press, Boca Raton, FL (2015)

    MATH  Google Scholar 

  8. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. (English summary) With additional contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R.A. Parker, L. Queen and B.B. Venkov. Grundlehren der Mathematischen Wissenschaften, vol. 290. Springer, New York (1999)

    Google Scholar 

  9. Gabriel, P., Roiter, A.V.: Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopedia of Mathematical Science, vol. 73. Springer, Berlin, Heidelberg, New York (1992)

    Google Scholar 

  10. Gantmacher, F.R.: The Theory of Matrices. vols. 1 and 2 (Translated by K.A. Hirsch). Chelsea Publishing Company, New York, NY (1960)

    Google Scholar 

  11. Gauss, C.F.: Disquisitiones Arithmeticae. Fleischer, Leipzig (1801); English translation, Yale University Press, New Haven, CT (1966)

    Google Scholar 

  12. Gustafson, W.H.: The history of algebras and their representations. In: Representations of Algebras, Proceedings (Workshop), Puebla, Mexico (1980). Lecture Notes in Mathematics, vol. 944, pp. 1–28. Springer, Berlin, Heidelberg, New York (1982)

    Google Scholar 

  13. Hoffman, K., Kunze, R.: Linear Algebra, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ (1971)

    MATH  Google Scholar 

  14. Katz, V.J., Parshall, K.H.: Taming the Unknown, a History of Algebra from Antiquity to the Early Twentieth Century. Princeton University Press, Princeton (2014)

    MATH  Google Scholar 

  15. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099. Springer, New York (1984)

    Google Scholar 

  16. Vandergraft, J.S.: Spectral properties of matrices which have invariant cones. SIAM J. Appl. Math. 16, 1208–1222 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barot, M., Jiménez González, J.A., de la Peña, JA. (2019). Fundamental Concepts. In: Quadratic Forms. Algebra and Applications, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-05627-8_1

Download citation

Publish with us

Policies and ethics