Skip to main content

Early Life Stages and Weaning

  • Chapter
  • First Online:

Abstract

Marine fish larvae and crustaceans need, during the first periods of larval life, to be fed with zooplankton reared with the use of microalgae (phytoplankton) and enriched with omega-3 fatty acids using specialized products. On the contrary freshwater fish can be fed directly with artificial feeds. Furthermore, one of the most difficult periods of marine larval rearing is the weaning from live prey to formulated microdiets. Thus, the strategies for larval rearing under the organic production regulation are different for the different groups. Chapter 5 describes the differences between freshwater and marine fish and between fish and crustaceans, not only in development but also in nutritional requirements. In addition, it discusses the marine and freshwater larval fish production in relation to organic aquaculture and the bottlenecks on the organic certification for the use of phytoplankton (microalgae) and zooplankton instead of commercially balanced feeds, formulated using ingredients approved by organic production rules and produced under these principles, like those used for organic freshwater larvae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is estimated that a gilthead seabream larvae consumes apx 70 rotifers at first feeding, and this number is increased to 700 per day at 25 days post-hatching (Papandroulakis 2000).

References

  • Ajiboye OO, Yakubu AF, Adams TE, Olaji ED, Nwogu NA (2011) A review of the use of copepods in marine fish larviculture. Rev Fish Biol Fish 21:225–246

    Article  Google Scholar 

  • Ayisi CL, Hua X, Apraku A, Afriyie G, Kyei BA (2017) Recent studies toward the development of practical diets for shrimp and their nutritional requirements. Hayati J Biosci 24:109–117

    Article  Google Scholar 

  • Bell JG, McEvoy LA, Tocher DR, Sargent J (2000) Depletion of α-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. J Nutr 130:1800–1808

    Article  CAS  Google Scholar 

  • Coves D Gasset E (1993) Gilthead seabream (Sparus aurata) intensive larva rearing in closed systems. In: Proceeding of the World Aquaculture 93. Special Publication European Aquaculture Society no. 19:342

    Google Scholar 

  • Cummins VC, Rawles SD, Thompson KR, Velasquez A, Kobayashi Y, Hager J, Webster CD (2017) Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 473:337–344

    Article  Google Scholar 

  • D’Abramo LR, Perez EI, Sangha R, Puello-Cruz A (2006) Successful culture of larvae of Litopenaeus vannamei fed a microbound diet exclusively from either stage PZ2 or M1 to PL1. Aquaculture 261:1356–1362

    Google Scholar 

  • Dabrowski K (1984) The feeding of fish larvae: present “state of the art” and perspectives. Reprod Nutr Dev 24:807–833

    Article  Google Scholar 

  • de Lorenzo MA, Poli MA, Candia EWS, Schleder DD, Rodrigues MS, Vieira FD (2016) Hatchery performance of the pacific white shrimp in biofloc system using different stocking densities. Aquacult Eng 75:46–50

    Article  Google Scholar 

  • de Lourdes Cobo Barcia M (2013) Intensification of white shrimp Litopenaeus vannamei (Boone) larviculture. PhD thesis, Ghent University, 200 p

    Google Scholar 

  • Debnath P, Khan SH, Karim M, Belton B, Mohan CV, Phillips M (2016) Review of the history, status and prospects of the black tiger shrimp (Penaeus monodon) hatchery sector in Bangladesh. Rev Aquac (2016) 8:301–313

    Article  Google Scholar 

  • Dhert P (1996) Roifers. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture, FAO Fish Tech Paper 361. FAO, Roma, pp 49–78

    Google Scholar 

  • Dhert P, Divanach P, Kentouri M, Sorgeloos P (1998) Rearing techniques of difficult marine fish larvae. World Aquac 29(1):48–55

    Google Scholar 

  • Dhont J, Dierckens K, Stottrup J, Van Stappen G, Wille M, Sorgeloos P (2013) Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture. In: Advances in aquaculture hatchery technology. Woodhead Publishing Limited, pp 157–202

    Google Scholar 

  • Divanach P (1985) Contribution a la connaissance de la biologie et de l’ élevage de 6 sparides Méditerranéens: Sparus aurata, Diplodus sargus, Diplodus vulgaris, Diplodus annularis, Lithognathus mormyrus, Puntazzo puntazzo (Poissons téléostéens). Thèse de doctorat dès Sciences, Université de Sciences et Techniques du Languedoc, Montpellier, 479 p

    Google Scholar 

  • Divanach P, Kentouri M (2000) Hatchery techniques for specific diversification in Mediterranean finfish larviculture. Cah Options Mediterr 47:75–87

    Google Scholar 

  • Drillet G, Maguet R, Mahjoub M-S, Roullier F, Fielding MJ (2014) Egg cannibalism in Acartia tonsa: effects of stocking density, algal concentration, and egg availability. Aquac Int 22:1295–1306

    Article  Google Scholar 

  • EGTOP (2014) Final report on aquaculture (part B). https://ec.europa.eu/agriculture/organic/eu-policy/expert-advice/documents/final-reports_en

  • Ekasari J, Bossier P (2017) Biofloc technology application in aquaculture to support sustainable development goals. Microb Biotechnol 10(5):1012–1016

    Article  Google Scholar 

  • Elgar MA (1990) Evolutionary compromise between few large and many small eggs: comparative evidence in teleost fish. Oikos 59:283–287

    Article  Google Scholar 

  • Estévez A, Ishikawa M, Kanazawa A (1997) Effects of arachidonic acid on pigmentation and fatty acid composition of Japanese flounder Paralichthys olivaceus (Temmink and Shlegel). Aquac Res 28:279–289

    Article  Google Scholar 

  • FAO (2018a) Fisheries statistical collections. Global Aquaculture Production. Online query: http://www.fao.org/fishery/statistics/global-aquaculture-production/en

  • FAO (2018b) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Fortier L, Harries RP (1989) Optimal foraging density-dependent competition in marine fish larvae. Mar Ecol Prog Ser 51:19–33

    Article  Google Scholar 

  • Franco SC, Augustin CB, Geffen A, Dinis MT (2017) Growth, egg production and hatching success of Acartia tonsa cultured at high densities. Aquaculture 468:569–578

    Article  Google Scholar 

  • Gallardo PP, Pedroza-Islas R, García-Galano T, Pascual C, Rosal C, Sánchez A, Gaxiola G (2002) Replacement of live food with a microbound diet in feeding Litopenaeus setiferus (Burkenroad) larvae. Aquac Res 33:681–691

    Google Scholar 

  • Galluci F, Olafsson E (2007) Cannibalistic behaviour of rock-pool copepods: an experimental approach for space, food and kinship. J Exp Mar Biol Ecol 342:325–331

    Article  Google Scholar 

  • Govoni JJ, Boehlert GW, Watanabe Y (1986) The physiology of digestion in fish larvae. Environ Biol Fish 16:59–77

    Article  Google Scholar 

  • Grice GD, Reeves MR (eds) (1982) Marine mesocosms, biological and chemical research in experimental ecosystems. Springer-Verlag, New York

    Google Scholar 

  • Hamre K, Holen E, Moren M (2007) Pigmentation and eye migration in Atlantic halibut (Hippoglossus hippoglossus L.) larvae: new findings and hypotheses. Aquac Nutr 13:65–80

    Article  CAS  Google Scholar 

  • Houde ED (1994) Differences between marine and freshwater fish larvae: implications for recruitment. ICES J Mar Sci 51:91–97

    Article  Google Scholar 

  • Jamali H, Ahmadifard N, Abdollahi D (2015) Evaluation of growth, survival and body composition of larval white shrimp (Litopenaeus vannamei) fed the combination of three types of algae. Int Aquat Res 7(2):115–122

    Article  Google Scholar 

  • Jokumsen A, Svendsen L (2010) Farming of freshwater rainbow trout in Denmark. DTU Aqua Report no. 219-2010. ISBN 978-87-7481-114-5

    Google Scholar 

  • Jones DA, Amjad S, Chitravadivelu K (1989) Comparison of artificial feeds used in penaeid shrimp hatcheries. In: Nour AM (ed). Proceedings of the 3rd Egyptian-British Conference on Animal, Fish and Poultry Production. University College of North Wales, Bangor, UK, pp 15–20

    Google Scholar 

  • Jones DA, Yule AB, Holland DL (1997) Larval nutrition. In: D’Abramo LR, Conklin DE, Akiyama DM (eds) Crustacean nutrition. Advances in world aquaculture, vol 6. World Aquaculture Society, Baton Rouge, pp 353–389

    Google Scholar 

  • Kanazawa A, Teshima S, Sasada H, Rahman SA (1982) Culture of prawn larvae with micro-particulate diets. Bull Jpn Soc Sci Fish 48:195–199

    Google Scholar 

  • Kanazawa A (1985) Microparticulate diets. In: Yone Y (ed) Fish nutrition and diets. Koseisha-Koseikatu, Tokyo, pp 99–110

    Google Scholar 

  • Kolkovski S (2008) Advances in marine fish larvae diets. In: Avances en Nutricion Acuicola IX. Univ. Autónoma de Nuevo León, Monterrey, pp 20–45

    Google Scholar 

  • Koven W, Barr Y, Lutzky S, Ben-Atia I, Weiss R, Harel M, Behrens P, Tandler A (2001) The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193:107–122

    Article  CAS  Google Scholar 

  • Lalli CM (1990) Enclosed experimental marine ecosystems: a review and recommendations, Coastal and marine studies. Springer-Verlag, New York

    Google Scholar 

  • Last JM (1979) The food of larval turbot Scohpthalmus maximus L. from the west central North Sea. J Cons Int Explor Mer 38:208–313

    Article  Google Scholar 

  • Lee CS, O’Bryen PJ, Marcus NH (2005) Copepods in aquaculture. Blackwell Publishing, Ames. 269 pages

    Book  Google Scholar 

  • Lubzens E, Zmora O (2003) Production and nutritional value of rotifers. In: Stottrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science Publishing Ltd, Oxford, pp 17–64

    Chapter  Google Scholar 

  • Lund I, Skov PV, Hansen BW (2012) Dietary supplementation of essential fatty acids in larval pikeperch (Sander lucioperca); short and long term effects on stress tolerance and metabolic physiology. Comp Biochem Physiol A 162:340–348

    Article  CAS  Google Scholar 

  • May RC (1974) Larval mortality in marine fishes and the critical period concept. In: Blaxter JHS (ed) The early life history of fish. Springer-Verlag, New York, pp 1–19

    Google Scholar 

  • Milstein A, Lev O (2004) Organic tilapia culture in Israel. In: Bureau of fisheries and Aquatic Resources (BFAR) & American tilapia Association (ATA) (ed) 6th international symposium on Tilapia in aquaculture, ISTA 6. ATA. Philippines, Manila

    Google Scholar 

  • Mourente G, Tocher DR (1992) Effect of weaning onto a pelleted diet on docosahexaenoic (22:6n-3) levels in brain of developing turbot (Scophthalmus maximus L.). Aquaculture 105:363–377

    Article  CAS  Google Scholar 

  • Mutti DW, Ballester ELC, Martino RC, Wasielesky W Jr, Cavalli RO (2017) Feeding n-3 HUFA enriched Artemia to the larvae of the pink shrimp Farfantepenaeus paulensis increases stress tolerance and subsequent growth. Lat Am J Aquat Res 45(1):18–24

    Article  Google Scholar 

  • Oie G, Galloway T, Soroy M et al (2015) Effect of cultivated copepods (Acartia tonsa) in first-feeding of Atlantic cod (Gadus morhua) and Ballan wrasse (Labrus bergylta) larvae. Aquac Nutr 23:3–17. https://doi.org/10.1111/anu.12352 

  • Panini RL, Freitas LEL, Guimaraes AM, Rios C, da Silva MFO, Vieira FN, Fracalossi DM, Samuels RI, Prudencio ES, Silva CP, Amboni RDMC (2017) Potential use of mealworms as an alternative protein source for pacific white shrimp: digestibility and performance. Aquaculture 473:115–120

    Article  CAS  Google Scholar 

  • Papadaki M, Piferrer F, Zanuy S, Maingot E, Divanach P, Mylonas CC (2005) Growth, sex differentiation and gonad and plasma levels of sex steroids in male- and female dominant populations of Dicentrarchus labrax obtained through repeated size grading. J Fish Biol 66:938–956

    Article  CAS  Google Scholar 

  • Papandroulakis N (2000) Influence of the rearing conditions on the development and food consumption of sea bream (Sparus aurata) during the early developmental stages. Mathematical simulations. Biology dept, School of Positive Sciences, University of Crete, Heraklion, 196 p. (in Greek, with English abstract)

    Google Scholar 

  • Papandroulakis N, Divanach P, Anastasiadis P, Kentouri M (2002) The pseudo-green water technique for intensive rearing of sea bream (Sparus aurata) larvae. Aquac Int 9:205–216

    Article  Google Scholar 

  • Papandroulakis N, Kentouri M, Maingot E, Divanach P (2004) Mesocosm a reliable technology for larval rearing. Application with Diplodus puntazzo and Diplodus sargus sargus. Aquac Int 12:345–355

    Article  Google Scholar 

  • Papandroulakis N, Mylonas CC, Maingot E, Divanach P (2005) First results of greater amberjack (Seriola dumerili) larval rearing in mesocosm. Aquaculture 250:155–161

    Article  Google Scholar 

  • Papandroulakis N, Lika K, Kristiansen T, Oppedal F, Divanach P, Pavlidis M (2011) Behaviour of European sea bass, Dicentrarchus labrax L., in cages – impact of early life rearing conditions and management. Aquac Res. https://doi.org/10.1111/are.12103

  • Person-Le Ruyet J (1989) Early weaning of marine fish larvae onto microdiets: constraints and perspectives. Actes de Colloque 9:625–642

    Google Scholar 

  • Prestinicola L, Boglione C, Makridis P, Spano A, Rimatori V, Palamara E, Scardi M, Cataudella S (2013) Environmental conditioning of skeletal anomalies typology and frequency in gilthead seabream (Sparus aurata L., 1758) juveniles. PLoS One 8(2):e55736. https://doi.org/10.1371/journal.pone.0055736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson CR, Samocha TM, Fox JM, Gandy RL, McKee DA (2005) The use of inert artificial commercial food sources as replacements of traditional live food items in the culture of larval shrimp, Farfantepenaeus aztecus. Aquaculture 245:135–147

    Google Scholar 

  • Sargent J, Bell JG, McEvoy L, Tocher DR, Estévez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–199

    Article  CAS  Google Scholar 

  • Saroglia M, Ingle E, Marino G, Del Vecchio ML, Porrello S (1989) Produzione commerciale di avannotti di spigola in Italia. Contributo della tecnologia acque verdi. Nova Thalassia 10:309–317

    Google Scholar 

  • Samocha TM, Matsumoto T, Jones ER, Torano M (1999) Use of artificial diets to reduce Artemia nauplii requirements for production of Litopenaeus vannamei postlarvae. The Israeli Journal of Aquaculture – Bamidgeh 51:157–168

    Google Scholar 

  • Shields RJ, Bell JG, Luizi FS, Gara B, Bromage N, Sargent JR (1999) Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. J Nutr 129:1186–1194

    Article  CAS  Google Scholar 

  • Sprague M, Betancor MB, Tocher DR (2017) Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnol Lett 39:1599–1609

    Article  CAS  Google Scholar 

  • Støttrup JG (2003) Production and nutritional value of copepods. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science, Oxford, pp 145–205

    Chapter  Google Scholar 

  • Thanh T, Trong Nghia T, Wille M, Sorgeloos P (2005) Recirculation systems: Sustainable alternatives for backyard shrimp hatcheries in Asia? Aquac Asia Mag. July–September, pp 32–33

    Google Scholar 

  • Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732

    Article  CAS  Google Scholar 

  • Vanacor-Barroso M, Carvalho CVAD, Antoniassi R, Ronzani-Cerqueira V (2017) The copepod Acartia tonsa as live feed for fat snook (Centropomus parallelus) larvae from notochord flexion to advanced metamorphosis. Lat Am J Aquat Res 45:159–166

    Article  Google Scholar 

  • Villalta M, Estevez A, Bransden MP (2005) Arachidonic acid enriched live prey induces albinism in Senegalese sole (Solea senegalensis) larvae. Aquaculture 245:193–209

    Article  CAS  Google Scholar 

  • Wang X, Mai K (2006) A successful microbound diet for the larval culture of Chinese shrimp Fenneropenaeus chinensis. J Ocean Univ China 4:267–271

    Google Scholar 

  • Wickins JF, Lee DO’C (2002) Crustacean farming ranching and culture, 2nd edn. Blackwell Science Ltd., Oxford. 445 pp

    Book  Google Scholar 

  • Wilkenfeld JS, Lawrence AL, Kuban KD (2009) Survival, metamorphosis and growth of penaeid shrimp larvae reared on a variety of algal and animal foods. J World Aquacult Soc 15(1–4):31–49

    Article  Google Scholar 

  • Wouters R, Van Horenbeeck T (2003a) Larval shrimp feeds: current status. In: Jory DE (ed). Responsible Aquaculture for a Secure Future: Proceedings of a Special Session on Shrimp Farming. World Aquaculture 2003, Recife, Brazil. The World Aquaculture Society, Baton Rouge, Louisiana USA, pp 90–109

    Google Scholar 

  • Wouters R, Van Horenbeeck T, Merchie G, Bridson P (2003b) Shrimp larval diets: dry diets made with fresh marine ingredients. Global Aquaculture Advocate 5(6):72–74

    Google Scholar 

  • Wouters R, Van Horenbeeck T, Merchie G (2003c) Nutritional flakes for shrimp postlarvae. Asian Aquaculture Magazine, January/February 2003, pp 25–27

    Google Scholar 

  • Wouters R, Cobo ML, Dhont J, Wille M (2009) Developments in feed formulations, feeding practices and culture techniques for marine shrimp larvae. In: Browdy CJ, Jory DE (eds) The rising tide: proceedings of the special session on sustainable shrimp farming, Aquaculture 2009. WAS, Baton Rouge, pp 79–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Estévez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Estévez, A., Papandroulakis, N., Wille, M., Sorgeloos, P. (2019). Early Life Stages and Weaning. In: Lembo, G., Mente, E. (eds) Organic Aquaculture . Springer, Cham. https://doi.org/10.1007/978-3-030-05603-2_5

Download citation

Publish with us

Policies and ethics