Skip to main content

Force Matching Approaches to Extend Density Functional Theory to Large Time and Length Scales

Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH,volume 28)

Abstract

We present methods for the creation of semi-empirical quantum approaches and reactive force fields through force matching to quantum simulation data for materials under reactive conditions. Our methodologies overcome the extreme computational cost of standard Kohn–Sham Density Functional Theory (DFT) by mapping DFT computed simulation data onto functional forms with linear dependence on their parameters. This allows for quick parameterization of our models by avoiding the nonlinear fitting bottlenecks associated with most molecular dynamics model development. We illustrate our approach with two different systems: (i) determination of density functional tight binding models for aqueous glycine dimerization, and (ii) determination of the Chebyshev Interactional Model for Efficient Simulation (ChIMES) reactive force field for metallic liquid carbon. In each case, we observe that our approach is easy to parametrize and yields a model that is orders of magnitude faster than DFT while largely retaining its accuracy. Overall, our methods have potential use for studying complex long time and length scale chemical reactivity at extreme conditions, where there is a significant need for computationally efficient atomistic simulations methods to aid in the interpretation and design of experiments.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05600-1_4
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-05600-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6

References

  1. Barrios MA, Hicks DG, Boehly TR, Fratanduono DE, Eggert JH, Celliers PM, Collins GW, Meyerhofer DD (2010) Phys Plasmas 17:056307

    CrossRef  CAS  Google Scholar 

  2. Manaa MR, Reed EJ, Fried LE, Goldman N (2009) JACS 131(15):5483. https://doi.org/10.1021/ja808196e

    CAS  CrossRef  Google Scholar 

  3. Eggert J, Hicks D, Celliers P, Bradley D, McWilliams R, Jeanloz R, Miller J, Boehly T, Collins G (2010) Nat Phys 6(1):40

    CAS  CrossRef  Google Scholar 

  4. Goldman N, Reed EJ, Fried LE (2009) J Chem Phys 131(20):204103

    PubMed  CrossRef  CAS  Google Scholar 

  5. Menikoff R, Sewell TD (2002) Combust Theory Model 6(1):103

    CAS  CrossRef  Google Scholar 

  6. Austin RA, Barton NR, Reaugh JE, Fried LE (2015) J Appl Phys 117(18):185902

    CrossRef  CAS  Google Scholar 

  7. Kroonblawd MP, Sewell TD (2016) Propellants. Explos Pyrotech 41(3):502

    CAS  CrossRef  Google Scholar 

  8. Goldman N, Fellers RS, Brown MG, Braly LB, Keoshian CJ, Leforestier C, Saykally RJ (2002) J Chem Phys 116(23):10148

    CAS  CrossRef  Google Scholar 

  9. Goldman N, Leforestier C, Saykally RJ (2005) Philos Trans R Soc A 363(1827):493

    CAS  CrossRef  Google Scholar 

  10. Goldman N, Reed EJ, Kuo IFW, Fried LE, Mundy CJ, Curioni A (2009) J Chem Phys 130:124517

    PubMed  CrossRef  CAS  Google Scholar 

  11. Goldman N, Reed EJ, Fried LE, Kuo IFW, Maiti A (2010) Nat Chem 2:949

    CAS  PubMed  CrossRef  Google Scholar 

  12. Cannella CB, Goldman N (2015) J Phys Chem C 119(37):21605

    CAS  CrossRef  Google Scholar 

  13. Goldman N, Fried LE (2012) J Phys Chem C 116(3):2198

    Google Scholar 

  14. Kenney JF, Kutcherov VA, Bendeliani NA, Alekseev VA (2002) Proc Natl Acad Sci USA 99(17):10976

    CAS  PubMed  CrossRef  Google Scholar 

  15. Scott HP, Hemley RJ, Mao HK, Herschbach DR, Fried LE, Howard WM, Bastea S (2004) Proc Natl Acad Sci USA 101(39):14023

    CAS  PubMed  CrossRef  Google Scholar 

  16. Kolesnikov A, Kutcherov VG, Goncharov AF (2009) Nat Geosci 2:566

    CAS  CrossRef  Google Scholar 

  17. Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105(41):9396

    CrossRef  CAS  Google Scholar 

  18. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260. https://doi.org/10.1103/PhysRevB.58.7260. https://link.aps.org/doi/10.1103/PhysRevB.58.7260

  19. Kroonblawd MP, Pietrucci F, Saitta AM, Goldman N (2018) J Chem Theory Comput 14:2207

    CAS  PubMed  CrossRef  Google Scholar 

  20. Ercolessi F, Adams JB (1994) Europhys Lett 26(8):583

    CAS  CrossRef  Google Scholar 

  21. Liu XY, Adams JB, Ercolessi F, Moriarty JA (1996) Model Simul Mater Sci Eng 4(3):293

    CAS  CrossRef  Google Scholar 

  22. Levenberg K (1944) Quart Appl Math 2:164

    CrossRef  Google Scholar 

  23. Marquardt D, SIAM (1963) J Appl Math 11:431

    Google Scholar 

  24. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220(4598):671

    Google Scholar 

  25. Press WH, Tuekolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  26. Tikhonov AN, Arsenin VY (1997) Solutions of Ill-posed problems, 3rd edn. Wiley, New York. Translated from Russian

    Google Scholar 

  27. Hoerl AE, Kennard RW (1970) Technometrics 12(1):55

    CrossRef  Google Scholar 

  28. Tibshirani R (1996) J R Stat Soc Ser B (Methodological) 267–288

    Google Scholar 

  29. Behler J (2015) Int J Quantum Chem 115:1032

    CAS  CrossRef  Google Scholar 

  30. Izvekov S, Rice BM (2014) J Chem Phys 140(10):104104

    PubMed  CrossRef  CAS  Google Scholar 

  31. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947. https://doi.org/10.1103/PhysRevB.51.12947. https://link.aps.org/doi/10.1103/PhysRevB.51.12947

  32. Koskinen P, Mäkinen V (2009) Comput Mat Sci 47(1):237. https://doi.org/10.1016/j.commatsci.2009.07.013. http://www.sciencedirect.com/science/article/pii/S0927025609003036

  33. Aradi B, Hourahine B, Frauenheim T (2007) J Phys Chem A 111(26):5678. https://doi.org/10.1021/jp070186p. http://dx.doi.org/10.1021/jp070186p. PMID: 17567110

  34. Gaus M, Cui Q, Elstner M (2011) J Chem Theory Comput 7:931

    CAS  CrossRef  Google Scholar 

  35. Goldman N (2015) Chem Phys Lett 622:128

    CAS  CrossRef  Google Scholar 

  36. Goldman N, Aradi B, Lindsey RK, Fried LE (2018) J Chem Theory Comput 14:2652

    Google Scholar 

  37. Goldman N, Srinivasan SG, Hamel S, Fried LE, Gaus M, Elstner M (2013) J Phys Chem C 117:7885

    CAS  CrossRef  Google Scholar 

  38. Srinivasan SG, Goldman N, Tamblyn I, Hamel S, Gaus M (2014) J Phys Chem A 118:5520

    CAS  PubMed  CrossRef  Google Scholar 

  39. Armstrong MR, Zaug JM, Goldman N, Kuo IFW, Crowhurst JC, Howard WM, Carter JA, Kashgarian M, Chesser JM, Barbee TW, Bastea S (2013) J Phys Chem A 117:13051. https://doi.org/10.1021/jp407595u

    CAS  PubMed  CrossRef  Google Scholar 

  40. Goldman N, Fried LE, Koziol L (2015) J Chem Theory Comput 11(10):4530. https://doi.org/10.1021/acs.jctc.5b00742. http://dx.doi.org/10.1021/acs.jctc.5b00742. PMID: 26574245

  41. Torrie GM, Valleau JP (1974) Chem Phys Lett 28(4):578. https://doi.org/10.1016/0009-2614(74)80109-0. http://www.sciencedirect.com/science/article/pii/0009261474801090

  42. Laio A, Parrinello M (2002) Proc Nat Acad Sci 99(20):12562. https://doi.org/10.1073/pnas.202427399

    CAS  PubMed  CrossRef  Google Scholar 

  43. Schreiner E, Nair NN, Marx D (2009) J Am Chem Soc 131(38):13668. https://doi.org/10.1021/ja9032742. http://dx.doi.org/10.1021/ja9032742 PMID:19725519

  44. Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M (2011) Nat Mat 10:693. https://doi.org/10.1038/nmat3078. http://dx.doi.org/10.1038/nmat3078

  45. Branduardi D, Gervasio FL, Parrinello M (2007) J Chem Phys 126(5):054103. https://doi.org/10.1063/1.2432340. http://dx.doi.org/10.1063/1.2432340

  46. Pietrucci F, Saitta AM (2015) Proc Nat Acad Sci 112(49):15030. https://doi.org/10.1073/pnas.1512486112. http://www.pnas.org/content/112/49/15030.abstract

  47. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) J Comput Chem 13(8):1011. https://doi.org/10.1002/jcc.540130812. http://dx.doi.org/10.1002/jcc.540130812

  48. Roux B (1995) Comput Phys Commun 91(1):275. https://doi.org/10.1016/0010-4655(95)00053-I. http://www.sciencedirect.com/science/article/pii/001046559500053I

  49. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M (2009) Comput Phys Commun 180(10):1961. https://doi.org/10.1016/j.cpc.2009.05.011. http://www.sciencedirect.com/science/article/pii/S001046550900157X

  50. Plumed is available at http://www.plumed.org/

  51. Car R, Parrinello M (1985) Phys Rev Lett 55:2471. https://doi.org/10.1103/PhysRevLett.55.2471. https://link.aps.org/doi/10.1103/PhysRevLett.55.2471

  52. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21(39), 395502 (2009). http://stacks.iop.org/0953-8984/21/i=39/a=395502

  53. Quantum espresso is available at http://www.quantum-espresso.org/

  54. Nosé S (1984) J Chem Phys 81(1):511. https://doi.org/10.1063/1.447334. http://dx.doi.org/10.1063/1.447334

  55. Hoover WG (1985) Phys Rev A 31:1695. https://doi.org/10.1103/PhysRevA.31.1695. https://link.aps.org/doi/10.1103/PhysRevA.31.1695

  56. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865

  57. Vanderbilt D (1990) Phys Rev B 41:7892. https://doi.org/10.1103/PhysRevB.41.7892. https://link.aps.org/doi/10.1103/PhysRevB.41.7892

  58. Plimpton S (1995) J Comput Phys 117(1):1. https://doi.org/10.1006/jcph.1995.1039. http://www.sciencedirect.com/science/article/pii/S002199918571039X

  59. Plimpton S (1995) J Phys Chem C 117(1):1

    CAS  Google Scholar 

  60. DFTB+ is available at https://www.dftb-plus.info/

  61. Niklasson AMN, Tymczak CJ, Challacombe M (2006) Phys Rev Lett 97:123001. https://doi.org/10.1103/PhysRevLett.97.123001. https://link.aps.org/doi/10.1103/PhysRevLett.97.123001

  62. Niklasson AMN (2008) Phys Rev Lett 100:123004. https://doi.org/10.1103/PhysRevLett.100.123004. https://link.aps.org/doi/10.1103/PhysRevLett.100.123004

  63. Niklasson AMN, Steneteg P, Odell A, Bock N, Challacombe M, Tymczak CJ, Holmström E, Zheng G, Weber V (2009) J Chem Phys 130(21):214109. https://doi.org/10.1063/1.3148075. http://dx.doi.org/10.1063/1.3148075

  64. Zheng G, Niklasson AMN, Karplus M (2011) J Chem Phys 135(4):044122. https://doi.org/10.1063/1.3605303. http://dx.doi.org/10.1063/1.3605303

  65. Mullen RG, Shea JE, Peters B (2014) J Chem Theory Comput 10(2):659

    CAS  PubMed  CrossRef  Google Scholar 

  66. Goyal P, Qian HJ, Irle S, Lu X, Roston D, Mori T, Elstner M, Cui Q (2014) J Phys Chem B 118(38):11007

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  67. Borsook H (1953) Adv Protein Chem 8:127. https://doi.org/10.1016/S0065-3233(08)60092-3. http://www.sciencedirect.com/science/article/pii/S0065323308600923

  68. Kitadai N (2014) J Mol Evol 78(3):171. https://doi.org/10.1007/s00239-014-9616-1. https://doi.org/10.1007/s00239-014-9616-1

  69. Shock EL (1992) Geochim et Cosmochim Acta 56(9):3481. https://doi.org/10.1016/0016-7037(92)90392-V. http://www.sciencedirect.com/science/article/pii/001670379290392V

  70. Kroonblawd MP, Goldman N (2018) Phys Rev B 97(18):184106

    CAS  CrossRef  Google Scholar 

  71. Koziol L, Fried LE, Goldman N (2017) J Chem Theory Comput 13:135

    Google Scholar 

  72. Lindsey RK, Fried LE, and Goldman N (2019) J Chem Theory Comput 15:436

    Google Scholar 

  73. Lindsey RK, Fried LE, Goldman N (2017) J Chem Theory Comput 13:6222

    Google Scholar 

  74. Brenner DW (1990) Phys Rev B 42(15):9458

    CAS  CrossRef  Google Scholar 

  75. Yu J, Sinnott SB, Phillpot SR (2007) Phys Rev B 75(8):085311

    CrossRef  CAS  Google Scholar 

  76. Bartók AP, Payne MC, Kondor R, Csányi G (2010) Phys Rev Lett 104(13):136403

    PubMed  CrossRef  CAS  Google Scholar 

  77. Bartók AP, Kondor R, Csányi G (2013) Phys Rev B 87(18):184115

    CrossRef  CAS  Google Scholar 

  78. Thompson AP, Swiler LP, Trott CR, Foiles SM, Tucker GJ (2015) J Comput Phys 285:316

    CAS  CrossRef  Google Scholar 

  79. Daw MS, Baskes MI (1984) Phys Rev B 29(12):6443

    CAS  CrossRef  Google Scholar 

  80. Baskes M (1992) Phys Rev B 46(5):2727

    CAS  CrossRef  Google Scholar 

  81. Wang Y, Shepler BC, Braams BJ, Bowman JM (2009) J Chem Phys 131(5):054511

    PubMed  CrossRef  CAS  Google Scholar 

  82. Wang Y, Huang X, Shepler BC, Braams BJ, Bowman JM (2011) J Chem Phys 134(9):094509

    PubMed  CrossRef  CAS  Google Scholar 

  83. Braams BJ, Bowman JM (2009) Int Rev Phys Chem 28(4):577

    CAS  CrossRef  Google Scholar 

  84. Los J, Fasolino A (2003) Phys Rev B Condens Matter Mater Phys 68(2):024107

    CrossRef  CAS  Google Scholar 

  85. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) J Phys Condens Matter 14(4):783

    CAS  CrossRef  Google Scholar 

  86. Kresse G, Hafner J (1993) Phys Rev B Condens Matter Mater Phys 47(1):558

    CAS  CrossRef  Google Scholar 

  87. Kresse G, Hafner J (1994) Phys Rev B Condens Matter Mater Phys 49(20):14251

    CAS  CrossRef  Google Scholar 

  88. Kresse G, Furthmüller J (1996) Comput Mater Sci 6(1):15

    CAS  CrossRef  Google Scholar 

  89. Kresse G, Furthmüller J (1996) Phys Rev B Condens Matter Mater Phys 54(16):11169

    CAS  CrossRef  Google Scholar 

  90. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    CAS  PubMed  CrossRef  Google Scholar 

  91. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    CAS  CrossRef  Google Scholar 

  92. Blöchl PE (1994) Phys Rev B Condens Matter Mater Phys 50(24):17953

    CrossRef  Google Scholar 

  93. Kresse G, Joubert D (1999) Phys Rev B Condens Matter Mater Phys 59(3):1758

    CAS  CrossRef  Google Scholar 

  94. French M, Mattsson TR, Nettelman N, Redmer R (2009) Phys Rev B 97:054107

    CrossRef  CAS  Google Scholar 

  95. Knudson MD, Desjarlais MP, Lemke RW, Mattsson TR, French M, Nettelmann N, Redmer R (2012) Phys Rev Lett 108:091102

    CAS  PubMed  CrossRef  Google Scholar 

  96. Chenoweth K, Cheung S, van Duin ACT, Goddard WA, Kober EM (2005) J Am Chem Soc 127:7192

    CAS  PubMed  CrossRef  Google Scholar 

  97. Melo LGA, Hitchcock AP, Susac D, Stumper J, Berejnov V (2018) Phys Chem Chem Phys 20:16625

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NASA Astrobiology: Exobiology and Evolutionary Biology Program Element NNH14ZDA001N. Work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The project 16-LW-020 was funded by the Laboratory Directed Research and Development Program at LLNL with N.G. as principal investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Goldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lindsey, R.K., Kroonblawd, M.P., Fried, L.E., Goldman, N. (2019). Force Matching Approaches to Extend Density Functional Theory to Large Time and Length Scales. In: Goldman, N. (eds) Computational Approaches for Chemistry Under Extreme Conditions. Challenges and Advances in Computational Chemistry and Physics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-05600-1_4

Download citation