Skip to main content

Analysis of Epileptic Activity Based on Brain Mapping of EEG Adaptive Time-Frequency Decomposition

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11309)


The applications of Empirical Mode Decomposition (EMD) in Biomedical Signal analysis have increased and is common now to find publications that use EMD to identify behaviors in the brain or heart. EMD has shown excellent results in the identification of behaviours from the use of electroencephalogram (EEG) signals. In addition, some advances in the computer area have made it possible to improve their performance. In this paper, we presented a method that, using an entropy analysis, can automatically choose the relevant Intrinsic Mode Functions (IMFs) from EEG signals. The idea is to choose the minimum number of IMFs to reconstruct the brain activity. The EEG signals were processed by EMD and the IMFs were ordered according to the entropy cost function. The IMFs with more relevant information are selected for the brain mapping. To validate the results, a relative error measure was used.


  • Brain mapping
  • Empirical mode decomposition
  • Epilepsy
  • Signal analysis

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Im, C., Seo, J.M.: A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett. 6(3), 104–112 (2016)

    CrossRef  Google Scholar 

  2. Subha, D.P., Joseph, P.K., Acharya, U.R., Lim, C.M.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)

    CrossRef  Google Scholar 

  3. Lin, K.Y., Chen, D.Y., Tsai, W.J.: Face-based heart rate signal decomposition and evaluation using multiple linear regression. IEEE Sens. J. 16(5), 1351–1360 (2016)

    CrossRef  Google Scholar 

  4. Bueno-Lopez, M., Giraldo, E., Molinas, M.: Analysis of neural activity from EEG data based on EMD frequency bands. In: 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Vol. 1, Batumi, Georgia, pp. 1–5. IEEE, December 2017

    Google Scholar 

  5. Men-Tzung, L., Kun, H., Yanhui, L., Peng, C., Vera, N.: Multimodal pressure-flow analysis: application of hilbert huang transform in cerebral blood flow regulation. EURASIP J. Adv. Signal Process. 2008(1), 1–15 (2008)

    MATH  Google Scholar 

  6. Zhang, T., et al.: Multivariate empirical mode decomposition based sub-frequency bands analysis of the default mode network: a resting-state fmri data study. Appl. Inform. 2(1), 2 (2015)

    CrossRef  Google Scholar 

  7. Giraldo-Suarez, E., Martinez-Vargas, J., Castellanos-Dominguez, G.: Reconstruction of neural activity from eeg data using dynamic spatiotemporal constraints. Int. J. Neural Syst. 26(07), 1–15 (2016)

    CrossRef  Google Scholar 

  8. Plummer, C., Harvey, A.S., Cook, M.: EEG source localization in focal epilepsy: where are we now? Epilepsia 49(2), 201–218 (2008)

    CrossRef  Google Scholar 

  9. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)

    CrossRef  Google Scholar 

  10. Xiang, J., et al.: The detection of epileptic seizure signals based on fuzzy entropy. J. Neurosci. Methods 243(Suppl. C), 18–25 (2015)

    CrossRef  Google Scholar 

  11. Wang, L., et al.: Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19(6), 3–17 (2017)

    Google Scholar 

  12. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995 (1998)

    CrossRef  MathSciNet  Google Scholar 

  13. Grech, R., et al.: Review on solving the inverse problem in EEG source analysis. J. NeuroEngineering Rehabil. 5(1), 25 (2008)

    CrossRef  Google Scholar 

  14. Munoz, P., Giraldo, E.: Time-course reconstruction of neural activity for multiples simultaneous source. In: IFMBE Proceedings CLAIB 2016, Vol. 60, Bucaramanga, Colombia, pp. iv/485–iv/488. Springer, October 2016

    Google Scholar 

  15. Deering, R., Kaiser, J.F.: The use of a masking signal to improve empirical mode decomposition. In: Proceedings of (ICASSP 2005) IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 4, pp. iv/485–iv/488, March 2005

    Google Scholar 

Download references


This work was carried out during the tenure of an ERCIM ‘Alain Bensoussan’ Fellowship Programme, also under the funding of the Departamento Administrativo Nacional de Ciencia, Tecnología e Innovación (Colciencias). Research project: 111077757982 “Sistema de identificación de fuentes epileptogénicas basado en medidas de conectividad funcional usando registros electroencefalográficos e imágenes de resonancia magnética en pacientes con epilepsia refractaria: apoyo a la cirugía resectiva” and also this work is also part of the research project”Solución del problema inverso dinámico considerando restricciones espacio-temporales no homogéneas aplicado a la reconstrucción de la actividad cerebral” funded by the Universidad Tecnológica de Pereira under the code E6-17-2.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pablo A. Muñoz-Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bueno-López, M., Muñoz-Gutiérrez, P.A., Giraldo, E., Molinas, M. (2018). Analysis of Epileptic Activity Based on Brain Mapping of EEG Adaptive Time-Frequency Decomposition. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)