Abstract
The applications of Empirical Mode Decomposition (EMD) in Biomedical Signal analysis have increased and is common now to find publications that use EMD to identify behaviors in the brain or heart. EMD has shown excellent results in the identification of behaviours from the use of electroencephalogram (EEG) signals. In addition, some advances in the computer area have made it possible to improve their performance. In this paper, we presented a method that, using an entropy analysis, can automatically choose the relevant Intrinsic Mode Functions (IMFs) from EEG signals. The idea is to choose the minimum number of IMFs to reconstruct the brain activity. The EEG signals were processed by EMD and the IMFs were ordered according to the entropy cost function. The IMFs with more relevant information are selected for the brain mapping. To validate the results, a relative error measure was used.
Keywords
- Brain mapping
- Empirical mode decomposition
- Epilepsy
- Signal analysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Im, C., Seo, J.M.: A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett. 6(3), 104–112 (2016)
Subha, D.P., Joseph, P.K., Acharya, U.R., Lim, C.M.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)
Lin, K.Y., Chen, D.Y., Tsai, W.J.: Face-based heart rate signal decomposition and evaluation using multiple linear regression. IEEE Sens. J. 16(5), 1351–1360 (2016)
Bueno-Lopez, M., Giraldo, E., Molinas, M.: Analysis of neural activity from EEG data based on EMD frequency bands. In: 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Vol. 1, Batumi, Georgia, pp. 1–5. IEEE, December 2017
Men-Tzung, L., Kun, H., Yanhui, L., Peng, C., Vera, N.: Multimodal pressure-flow analysis: application of hilbert huang transform in cerebral blood flow regulation. EURASIP J. Adv. Signal Process. 2008(1), 1–15 (2008)
Zhang, T., et al.: Multivariate empirical mode decomposition based sub-frequency bands analysis of the default mode network: a resting-state fmri data study. Appl. Inform. 2(1), 2 (2015)
Giraldo-Suarez, E., Martinez-Vargas, J., Castellanos-Dominguez, G.: Reconstruction of neural activity from eeg data using dynamic spatiotemporal constraints. Int. J. Neural Syst. 26(07), 1–15 (2016)
Plummer, C., Harvey, A.S., Cook, M.: EEG source localization in focal epilepsy: where are we now? Epilepsia 49(2), 201–218 (2008)
Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)
Xiang, J., et al.: The detection of epileptic seizure signals based on fuzzy entropy. J. Neurosci. Methods 243(Suppl. C), 18–25 (2015)
Wang, L., et al.: Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19(6), 3–17 (2017)
Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995 (1998)
Grech, R., et al.: Review on solving the inverse problem in EEG source analysis. J. NeuroEngineering Rehabil. 5(1), 25 (2008)
Munoz, P., Giraldo, E.: Time-course reconstruction of neural activity for multiples simultaneous source. In: IFMBE Proceedings CLAIB 2016, Vol. 60, Bucaramanga, Colombia, pp. iv/485–iv/488. Springer, October 2016
Deering, R., Kaiser, J.F.: The use of a masking signal to improve empirical mode decomposition. In: Proceedings of (ICASSP 2005) IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 4, pp. iv/485–iv/488, March 2005
Acknowledgment
This work was carried out during the tenure of an ERCIM ‘Alain Bensoussan’ Fellowship Programme, also under the funding of the Departamento Administrativo Nacional de Ciencia, Tecnología e Innovación (Colciencias). Research project: 111077757982 “Sistema de identificación de fuentes epileptogénicas basado en medidas de conectividad funcional usando registros electroencefalográficos e imágenes de resonancia magnética en pacientes con epilepsia refractaria: apoyo a la cirugía resectiva” and also this work is also part of the research project”Solución del problema inverso dinámico considerando restricciones espacio-temporales no homogéneas aplicado a la reconstrucción de la actividad cerebral” funded by the Universidad Tecnológica de Pereira under the code E6-17-2.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bueno-López, M., Muñoz-Gutiérrez, P.A., Giraldo, E., Molinas, M. (2018). Analysis of Epileptic Activity Based on Brain Mapping of EEG Adaptive Time-Frequency Decomposition. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-05587-5_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05586-8
Online ISBN: 978-3-030-05587-5
eBook Packages: Computer ScienceComputer Science (R0)